Suppr超能文献

利用结构线性混合模型,通过与多个环境因素的相互作用鉴定影响体重指数的遗传位点。

Identification of genetic loci affecting body mass index through interaction with multiple environmental factors using structured linear mixed model.

机构信息

Department of Biomedical Science, School of Medicine, Kyung Hee University, Seoul, South Korea.

Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea.

出版信息

Sci Rep. 2021 Mar 2;11(1):5001. doi: 10.1038/s41598-021-83684-1.

Abstract

Multiple environmental factors could interact with a single genetic factor to affect disease phenotypes. We used Struct-LMM to identify genetic variants that interacted with environmental factors related to body mass index (BMI) using data from the Korea Association Resource. The following factors were investigated: alcohol consumption, education, physical activity metabolic equivalent of task (PAMET), income, total calorie intake, protein intake, carbohydrate intake, and smoking status. Initial analysis identified 7 potential single nucleotide polymorphisms (SNPs) that interacted with the environmental factors (P value < 5.00 × 10). Of the 8 environmental factors, PAMET score was excluded for further analysis since it had an average Bayes Factor (BF) value < 1 (BF = 0.88). Interaction analysis using 7 environmental factors identified 11 SNPs (P value < 5.00 × 10). Of these, rs2391331 had the most significant interaction (P value = 7.27 × 10) and was located within the intron of EFNB2 (Chr 13). In addition, the gene-based genome-wide association study verified EFNB2 gene significantly interacting with 7 environmental factors (P value = 5.03 × 10). BF analysis indicated that most environmental factors, except carbohydrate intake, contributed to the interaction of rs2391331 on BMI. Although the replication of the results in other cohorts is warranted, these findings proved the usefulness of Struct-LMM to identify the gene-environment interaction affecting disease.

摘要

多种环境因素可以与单个遗传因素相互作用,从而影响疾病表型。我们使用 Struct-LMM 来识别与体重指数(BMI)相关的环境因素相互作用的遗传变异,这些环境因素包括:饮酒、教育、身体活动代谢当量(PAMET)、收入、总卡路里摄入量、蛋白质摄入量、碳水化合物摄入量和吸烟状况。初步分析确定了 7 个与环境因素相互作用的潜在单核苷酸多态性(SNP)(P 值<5.00×10)。在 8 个环境因素中,由于 PAMET 评分的平均贝叶斯因子(BF)值<1(BF=0.88),因此排除其进行进一步分析。使用 7 个环境因素进行的相互作用分析确定了 11 个 SNP(P 值<5.00×10)。其中,rs2391331 具有最显著的相互作用(P 值=7.27×10),位于 EFNB2 基因的内含子中(Chr 13)。此外,基于基因的全基因组关联研究验证了 EFNB2 基因与 7 个环境因素显著相互作用(P 值=5.03×10)。BF 分析表明,除了碳水化合物摄入量之外,大多数环境因素都有助于 rs2391331 对 BMI 的相互作用。虽然需要在其他队列中复制这些结果,但这些发现证明了 Struct-LMM 用于识别影响疾病的基因-环境相互作用的有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa2e/7925554/01d214df7281/41598_2021_83684_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验