Suppr超能文献

利用深度学习在差分干涉合成孔径雷达数据中自动描绘冰川接地线

Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning.

作者信息

Mohajerani Yara, Jeong Seongsu, Scheuchl Bernd, Velicogna Isabella, Rignot Eric, Milillo Pietro

机构信息

Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA.

eScience Institute and Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA.

出版信息

Sci Rep. 2021 Mar 2;11(1):4992. doi: 10.1038/s41598-021-84309-3.

Abstract

Delineating the grounding line of marine-terminating glaciers-where ice starts to become afloat in ocean waters-is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models.

摘要

描绘海洋终端冰川的接地线(即冰开始在海水中漂浮的位置)对于测量和理解冰盖质量平衡、冰川动力学及其对海平面上升的贡献至关重要。此前,这项任务是由人类专家通过对差分干涉合成孔径雷达干涉图进行耗时的、大多为手动的数字化处理来完成的。随着卫星观测数据的快速增长以及需要在整个大陆建立具有量化不确定性的时间序列,这种方法已不再可行。我们提出了一种具有并行空洞卷积层和非对称编码器/解码器组件的全卷积神经网络,该网络能够自动、高效地在大尺度上描绘接地线,并给出不确定性估计。我们的程序在100米间距的干涉图中能在232米范围内检测到接地线,这与人类专家的表现相当。我们还发现在一些甚至对人类专家构成挑战的情况下,机器学习方法也具有价值。我们使用这种方法,通过2018年的22935张干涉图绘制了南极洲周围接地线位置的潮汐诱导变化。在南极洲西部的盖茨冰架沿线,我们证明接地带比流体静力平衡预期的宽一个数量级(13.3±3.9),这证明了需要反复全面地绘制接地线以用于数值模型的合理性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daf7/7925556/0f0809d5f83f/41598_2021_84309_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验