Mertens Joke, Zambelli Filippo, Daneels Dorien, Caljon Ben, Sermon Karen, Spits Claudia
Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussel, Belgium.
Clinica Eugin, Barcelona, Spain.
Bio Protoc. 2019 Jul 5;9(13):e3283. doi: 10.21769/BioProtoc.3283.
Detecting heteroplasmies in the mitochondrial DNA (mtDNA) has been a challenge for many years. In the past, Sanger sequencing was the main option to perform this analysis, however, this method could not detect low frequency heteroplasmies. Massive Parallel Sequencing (MPS) provides the opportunity to study the mtDNA in depth, but a controlled pipeline is necessary to reliably retrieve and quantify the low frequency variants. It has been shown that differences in methods can significantly affect the number and frequency of the retrieved variants. In this protocol, we present a method involving both wet lab and bioinformatics that allows identifying and quantifying single nucleotide variants in the full mtDNA sequence, down to a heteroplasmic load of 1.5%. For this, we set up a PCR-based amplification of the mtDNA, followed by MPS using Illumina chemistry, and variant calling with two different algorithms, mtDNA server and Mutect. The PCR amplification is used to enrich the mitochondrial fraction, while the bioinformatic processing with two algorithms is used to discriminate the true heteroplasmies from background noise. The protocol described here allows for deep sequencing of the mitochondrial DNA in bulk DNA samples as well as single cells (both large cells such as human oocytes, and small-sized single cells such as human embryonic stem cells) with minor modifications to the protocol.
多年来,检测线粒体DNA(mtDNA)中的异质性一直是一项挑战。过去,桑格测序是进行这项分析的主要选择,然而,这种方法无法检测低频异质性。大规模平行测序(MPS)为深入研究mtDNA提供了机会,但需要一个可控的流程来可靠地检索和定量低频变异。研究表明,方法上的差异会显著影响检索到的变异的数量和频率。在本方案中,我们提出了一种涉及湿实验室和生物信息学的方法,该方法能够识别和定量完整mtDNA序列中的单核苷酸变异,低至1.5%的异质性负荷。为此,我们建立了基于PCR的mtDNA扩增,随后使用Illumina化学进行MPS,并使用两种不同算法(mtDNA server和Mutect)进行变异检测。PCR扩增用于富集线粒体部分,而使用两种算法的生物信息学处理则用于从背景噪声中区分真正的异质性。这里描述的方案允许对大量DNA样本以及单细胞(如人类卵母细胞等大细胞和人类胚胎干细胞等小尺寸单细胞)中的线粒体DNA进行深度测序,只需对方案进行微小修改。