Suppr超能文献

鸣禽(鸟纲,佛法僧目)的颅腔形态:功能和生态意义。

Endocranial morphology of the piciformes (Aves, Coraciimorphae): Functional and ecological implications.

机构信息

Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), UNC, CONICET, Córdoba, Argentina.

Instituto de Física Enrique Gaviola (IFEG, UNC, CONICET, Córdoba, Argentina.

出版信息

J Anat. 2021 Jul;239(1):167-183. doi: 10.1111/joa.13416. Epub 2021 Mar 2.

Abstract

We used three-dimensional digital models to investigate the brain and endosseous labyrinth morphology of selected Neotropical Piciformes (Picidae, Ramphastidae, Galbulidae and Bucconidae). Remarkably, the brain morphology of Galbulidae clearly separates from species of other families. The eminentiae sagittales of Galbulidae and Bucconidae (insectivorous with high aerial maneuverability abilities) are smaller than those of the toucans (scansorial frugivores). Galbula showed the proportionally largest cerebellum, and Ramphastidae showed the least foliated one. Optic lobes ratio relative to the telencephalic hemispheres showed a strong phylogenetic signal. Three hypotheses were tested: (a) insectivorous taxa that need precise and fast movements to catch their prey, have well developed eminentiae sagittales compared to fruit eaters, (b) species that require high beak control would show larger cerebellum compared to other brain regions and higher number of visible folia and (c) there are marked differences between the brain shape of the four families studied here that bring valuable information of this interesting bird group. Hypotheses H1 and H2 are rejected, meanwhile H3 is accepted.

摘要

我们使用三维数字模型来研究选定的新热带类(啄木鸟科、巨嘴鸟科、林鸱科和鵎鵼科)的脑和内骨骼迷路形态。值得注意的是,林鸱科的脑形态明显与其他科的物种分离。林鸱科和鵎鵼科(具有高空中机动能力的食虫性)的矢状嵴比巨嘴鸟(攀缘食果性)的小。巨嘴鸟显示出比例最大的小脑,而巨嘴鸟科显示出最小的有叶片的。相对于端脑半球的视叶比例显示出强烈的系统发育信号。我们测试了三个假设:(a)需要精确和快速运动来捕捉猎物的食虫性类群与食果性类群相比,具有发育良好的矢状嵴,(b)需要更好地控制喙的物种与其他脑区相比,会显示出更大的小脑和更多可见的叶片,(c)这里研究的四个科之间的脑形状有明显差异,为这个有趣的鸟类群体提供了有价值的信息。假设 H1 和 H2 被拒绝,而 H3 被接受。

相似文献

1
Endocranial morphology of the piciformes (Aves, Coraciimorphae): Functional and ecological implications.
J Anat. 2021 Jul;239(1):167-183. doi: 10.1111/joa.13416. Epub 2021 Mar 2.
2
Flightless birds are not neuroanatomical analogs of non-avian dinosaurs.
BMC Evol Biol. 2018 Dec 13;18(1):190. doi: 10.1186/s12862-018-1312-0.
3
Endocranial anatomy of the charadriiformes: sensory system variation and the evolution of wing-propelled diving.
PLoS One. 2012;7(11):e49584. doi: 10.1371/journal.pone.0049584. Epub 2012 Nov 27.
5
Comparative analysis of vestibular ecomorphology in birds.
J Anat. 2017 Dec;231(6):990-1018. doi: 10.1111/joa.12726.
6
Brain size and morphology of the brood-parasitic and cerophagous honeyguides (Aves: Piciformes).
Brain Behav Evol. 2013;81(3):170-86. doi: 10.1159/000348834. Epub 2013 Apr 24.
8
Comparative morphology of snake (Squamata) endocasts: evidence of phylogenetic and ecological signals.
J Anat. 2017 Dec;231(6):849-868. doi: 10.1111/joa.12692. Epub 2017 Sep 28.
9
Endocast structures are reliable proxies for the sizes of corresponding regions of the brain in extant birds.
J Anat. 2020 Dec;237(6):1162-1176. doi: 10.1111/joa.13285. Epub 2020 Sep 6.
10
A reappraisal of Cerebavis cenomanica (Aves, Ornithurae), from Melovatka, Russia.
J Anat. 2016 Aug;229(2):215-27. doi: 10.1111/joa.12406. Epub 2015 Nov 10.

本文引用的文献

1
Endocast structures are reliable proxies for the sizes of corresponding regions of the brain in extant birds.
J Anat. 2020 Dec;237(6):1162-1176. doi: 10.1111/joa.13285. Epub 2020 Sep 6.
2
Allometric Scaling Rules of the Cerebellum in Galliform Birds.
Brain Behav Evol. 2020;95(2):78-92. doi: 10.1159/000509069. Epub 2020 Jul 31.
3
Tempo and Pattern of Avian Brain Size Evolution.
Curr Biol. 2020 Jun 8;30(11):2026-2036.e3. doi: 10.1016/j.cub.2020.03.060. Epub 2020 Apr 23.
4
The functional architecture, receptive field characteristics, and representation of objects in the visual network of the pigeon brain.
Prog Neurobiol. 2020 Dec;195:101781. doi: 10.1016/j.pneurobio.2020.101781. Epub 2020 Feb 22.
5
Brain size expansion in primates and humans is explained by a selective modular expansion of the cortico-cerebellar system.
Cortex. 2019 Sep;118:292-305. doi: 10.1016/j.cortex.2019.04.023. Epub 2019 May 22.
6
Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny?
J Anat. 2019 Mar;234(3):291-305. doi: 10.1111/joa.12918. Epub 2018 Dec 3.
7
Visual-Cerebellar Pathways and Their Roles in the Control of Avian Flight.
Front Neurosci. 2018 Apr 9;12:223. doi: 10.3389/fnins.2018.00223. eCollection 2018.
8
What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight.
Front Neurosci. 2017 Nov 7;11:619. doi: 10.3389/fnins.2017.00619. eCollection 2017.
9
Comparative analysis of vestibular ecomorphology in birds.
J Anat. 2017 Dec;231(6):990-1018. doi: 10.1111/joa.12726.
10
Avian brains: Insights from development, behaviors and evolution.
Dev Growth Differ. 2017 May;59(4):244-257. doi: 10.1111/dgd.12362. Epub 2017 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验