Takahashi Riku, Miyazako Hiroki, Tanaka Aya, Ueno Yuko, Yamaguchi Masumi
NTT Basic Research Laboratories, Bio-Medical Informatics Research Center, NTT Corporation, 3-1 Morinosato -Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
Lab Chip. 2021 Apr 7;21(7):1307-1317. doi: 10.1039/d0lc01275k. Epub 2021 Mar 3.
Microchannels in soft materials play an important role in developing movable, deformable, and biocompatible fluidic systems for applications in various fields. Intensively investigated approaches to create microscale channel architectures use mechanical instability in soft materials, which can provide intricate yet ordered architectures with low cost and high throughput. Here, for microchannel fabrication, we demonstrate the use of swelling-driven buckle delamination of hydrogels, which is a mechanical instability pattern found in compressed film/substrate layer composites. By spatially controlling interfacial bonding between a thin polyacrylamide (PAAm) gel film and glass substrate, swelling-driven compressive stress induces buckle delamination at programmed positions, resulting in the formation of continuous hollow paths as microchannels. Connecting flow tubes with a 3D-printed connecter provides a deformable microfluidic device, enabling pressure-driven flows without leakage from the connecter and rupture of the channels. Furthermore, by stacking less-swellable bulk gels on the device, we obtained a tough, permeable, and biocompatible microfluidic device. Finally, we performed a cell culture on the device and chemical stimulation to cells through the diffusion of molecules from the microchannels. The results of this work shed light on designing pressure sensitive/resistant microfluidic systems based on diverse hydrogels with intricate 3D morphologies and will be useful for applications in the fields of bioanalysis, biomimetics, tissue engineering, and cell biology.
软材料中的微通道在开发用于各种领域的可移动、可变形和生物相容的流体系统中起着重要作用。为创建微尺度通道结构而深入研究的方法利用了软材料中的机械不稳定性,这种方法能够以低成本和高通量提供复杂而有序的结构。在此,对于微通道制造,我们展示了利用水凝胶的溶胀驱动屈曲分层,这是在压缩膜/基底层复合材料中发现的一种机械不稳定性模式。通过在空间上控制薄聚丙烯酰胺(PAAm)凝胶膜与玻璃基板之间的界面结合,溶胀驱动的压缩应力在预定位置引发屈曲分层,从而形成作为微通道的连续中空路径。用3D打印连接器连接流管可提供一个可变形的微流体装置,实现压力驱动流动,且不会从连接器处泄漏或通道破裂。此外,通过在该装置上堆叠溶胀性较小的块状凝胶,我们获得了一种坚韧、可渗透且生物相容的微流体装置。最后,我们在该装置上进行了细胞培养,并通过微通道中分子的扩散对细胞进行化学刺激。这项工作的结果为基于具有复杂3D形态的各种水凝胶设计压敏/耐压微流体系统提供了思路,将有助于生物分析、仿生学、组织工程和细胞生物学等领域的应用。