Georg-August-Universitaet Goettingen, Universitaetsmedizin - Neurochemistry, Goettingen, Niedersachsen, Germany.
Arq Neuropsiquiatr. 2021 Jan;79(1):56-67. doi: 10.1590/0004-282X-anp-2020-0094.
Increased concentrations of serum proteins in cerebrospinal fluid (CSF) are interpreted as blood-CSF barrier dysfunction. Frequently used interpretations such as barrier leakage, disruption or breakdown contradict CSF protein data, which suggest a reduced CSF flow rate as the cause.
Even the severest barrier dysfunctions do not change the molecular size-dependent selectivity or the interindividual variation of the protein transfer across barriers. Serum protein concentrations in lumbar CSF increase with hyperbolic functions, but the levels of proteins that do not pass the barrier remain constant (brain proteins) or increase linearly (leptomeningal proteins). All CSF protein dynamics above and below a lumbar blockade can also be explained, independent of their barrier passage, by a reduced caudally directed flow. Local accumulation of gadolinium in multiple sclerosis (MS) is now understood as due to reduced bulk flow elimination by interstitial fluid (ISF). Nonlinear change of the steady state in barrier dysfunction and along normal rostro-caudal gradients supports the diffusion/flow model and contradicts obstructions of diffusion pathways. Regardless of the cause of the disease, pathophysiological flow blockages are found in bacterial meningitis, leukemia, meningeal carcinomatosis, Guillain-Barré syndrome, MS and experimental allergic encephalomyelitis. In humans, the fortyfold higher albumin concentrations in early fetal development decrease later with maturation of the arachnoid villi, i.e., with beginning CSF outflow, which contradicts a relevant outflow to the lymphatic system. Respiration- and heartbeat-dependent oscillations do not disturb net direction of CSF flow.
Blood-CSF and blood-brain barrier dysfunctions are an expression of reduced CSF or ISF flow rate.
脑脊液(CSF)中血清蛋白浓度的增加被解释为血脑屏障功能障碍。经常使用的解释,如屏障渗漏、破坏或崩溃,与 CSF 蛋白数据相矛盾,后者表明 CSF 流速降低是其原因。
即使是最严重的屏障功能障碍也不会改变分子大小依赖性选择性或蛋白质跨屏障转移的个体间变异。腰椎 CSF 中的血清蛋白浓度呈双曲线函数增加,但未通过屏障的蛋白质水平保持不变(脑蛋白)或呈线性增加(软脑膜蛋白)。在腰椎阻滞以上和以下的所有 CSF 蛋白动力学都可以通过降低向尾侧的流动来解释,而无需考虑其通过屏障。目前认为,多发性硬化症(MS)中钆的局部积累是由于间质液(ISF)通过减少整体流动而消除的。在正常的前后梯度中,屏障功能障碍和稳定状态的非线性变化支持扩散/流动模型,并与扩散途径的阻塞相矛盾。无论疾病的原因如何,在细菌性脑膜炎、白血病、脑膜癌转移、格林-巴利综合征、MS 和实验性过敏性脑脊髓炎中都发现了病理生理学的流动阻塞。在人类中,早期胎儿发育中白蛋白浓度高出四十倍,随着蛛网膜绒毛的成熟(即 CSF 流出开始)而降低,这与向淋巴系统的相关流出相矛盾。呼吸和心跳依赖的振荡不会干扰 CSF 流动的净方向。
血脑屏障和血脑脊液屏障功能障碍是 CSF 或 ISF 流速降低的表现。