Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
Department of Imaging, Gundersen Health System, 1900 South Ave, La Crosse, WI, 54601, USA.
Med Phys. 2021 Jul;48(7):3638-3653. doi: 10.1002/mp.14813. Epub 2021 May 30.
Channelized Hotelling observer (CHO) models have been implemented to assess imaging performance in x-ray angiography systems. While current methods are appropriate for assessing unprocessed images of moving test objects upon uniform-exposure backgrounds, they are inadequate for assessing conditions which more appropriately mimic clinical imaging conditions including the combination of moving test objects, complex anthropomorphic backgrounds, and image processing. In support of this broad goal, the purpose of this work was to develop theory and methods to automatically select a subset of task-specific efficient Gabor channels from a task-generic Gabor channel base set. Also, previously described theory and methods to manage detectability index (d') bias due to nonrandom temporal variations in image electronic noise will be revisited herein.
Starting with a base set of 96 Gabor channels, backward elimination of channels was used to automatically identify an "efficient" channel subset which reduced the number of channels retained in the subset while maintaining the magnitude of the d' estimate. The concept of a pixelwise Hotelling observer (PHO) model was introduced and similarly implemented to assess the performance of the efficient-channel CHO model. Bias in d' estimates arising from temporally variable nonstationary noise was modeled as a bivariate probability density function for normal distributions, where one variable corresponds to the signal from the test object and the other variable corresponds to the signal from temporally variable nonstationary noise. Theory and methods were tested on uniform-exposure unprocessed angiography images with detector target dose (DTD) of 6, 18, and 120 nGy containing static disk-shaped test objects with diameter in the range of 0.5 to 4 mm.
Considering all DTD levels and test object sizes, the proposed method reduced the number of Gabor channels in the final subset by 63-82% compared to the original 96 Gabor channel base set, while maintaining a mean relative performance ( ) of 95% 4% with respect to the reference PHO model. Experimental results demonstrated that the bivariate approach to account for bias due to temporally variable nonstationary noise resulted in improved correlation between the CHO and PHO models as compared to a previously proposed univariate approach.
Computationally efficient backward elimination can be used to select an efficient subset of Gabor channels from an initial channel base set without substantially compromising the magnitude of the d' estimate. Bias due to temporally variable nonstationary noise can be modeled through a bivariate approach leading to an improved unbiased estimate of d'.
通道化霍特林观测器(CHO)模型已被用于评估 X 射线血管造影系统的成像性能。虽然当前的方法适用于评估在均匀曝光背景下运动测试对象的未处理图像,但它们不适用于评估更适合模拟临床成像条件的情况,包括运动测试对象、复杂的拟人化背景和图像处理的组合。为了支持这一广泛的目标,本工作的目的是开发从任务通用的 Gabor 通道基础集中自动选择一组特定任务的有效 Gabor 通道的理论和方法。此外,本文还将重新讨论以前描述的用于管理由于图像电子噪声的非随机时变引起的检测能力指数(d')偏差的理论和方法。
从一组 96 个 Gabor 通道开始,使用向后消除的方法自动识别一个“有效”的通道子集,该子集在保持 d'估计值的幅度的同时减少了保留在子集中的通道数量。引入了像素级霍特林观测器(PHO)模型的概念,并类似地实施,以评估有效通道 CHO 模型的性能。由于时变非平稳噪声引起的 d'估计偏差被建模为正态分布的二元概率密度函数,其中一个变量对应于测试对象的信号,另一个变量对应于时变非平稳噪声的信号。理论和方法在具有探测器目标剂量(DTD)为 6、18 和 120 nGy 的均匀曝光未处理血管造影图像上进行了测试,这些图像包含直径在 0.5 至 4 毫米范围内的静态圆盘状测试对象。
考虑到所有 DTD 水平和测试对象尺寸,与原始的 96 个 Gabor 通道基础集相比,所提出的方法将最终子集中的 Gabor 通道数量减少了 63-82%,同时保持了相对于参考 PHO 模型的平均相对性能( )为 95%±4%。实验结果表明,与以前提出的单变量方法相比,采用二元方法来解释由于时变非平稳噪声引起的偏差,可以提高 CHO 和 PHO 模型之间的相关性。
可以使用计算效率高的向后消除方法从初始通道基础集中选择有效的 Gabor 通道子集,而不会大大降低 d'估计值的幅度。通过二元方法可以对由于时变非平稳噪声引起的偏差进行建模,从而可以对 d'进行无偏估计。