Zhang Yani, Pham Binh T, Eckstein Miguel P
Vision and Image Understanding Laboratory, Department of Psychology, University of California, Santa Barbara, California 93106, USA.
Med Phys. 2007 Aug;34(8):3312-22. doi: 10.1118/1.2756603.
The inclusion of internal noise in model observers is a common method to allow for quantitative comparisons between human and model observer performance in visual detection tasks. In this article, we studied two different strategies for inserting internal noise into Hotelling model observers. In the first strategy, internal noise was added to the output of individual channels: (a) Independent nonuniform channel noise, (b) independent uniform channel noise. In the second strategy, internal noise was added to the decision variable arising from the combination of channel responses. The standard deviation of the zero mean internal noise was either constant or proportional to: (a) the decision variable's standard deviation due to the external noise, (b) the decision variable's variance caused by the external noise, (c) the decision variable magnitude on a trial to trial basis. We tested three model observers: square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO) using a four alternative forced choice (4AFC) signal known exactly but variable task with a simulated signal embedded in real x-ray coronary angiogram backgrounds. The results showed that the internal noise method that led to the best prediction of human performance differed across the studied model observers. The CHO model best predicted human observer performance with the channel internal noise. The HO and LGHO best predicted human observer performance with the decision variable internal noise. The present results might guide researchers with the choice of methods to include internal noise into Hotelling model observers when evaluating and optimizing medical image quality.
在模型观察者中纳入内部噪声是一种常用方法,可用于在视觉检测任务中对人类和模型观察者的性能进行定量比较。在本文中,我们研究了将内部噪声插入到霍特林模型观察者中的两种不同策略。在第一种策略中,内部噪声被添加到各个通道的输出中:(a)独立的非均匀通道噪声,(b)独立的均匀通道噪声。在第二种策略中,内部噪声被添加到由通道响应组合产生的决策变量中。零均值内部噪声的标准差要么是恒定的,要么与以下因素成比例:(a)由于外部噪声导致的决策变量的标准差,(b)由外部噪声引起的决策变量的方差,(c)每次试验中决策变量的大小。我们使用一种四择一强制选择(4AFC)信号确切已知但可变的任务,在真实的x射线冠状动脉造影背景中嵌入模拟信号,测试了三种模型观察者:方形窗口霍特林观察者(HO)、通道化霍特林观察者(CHO)和拉盖尔 - 高斯霍特林观察者(LGHO)。结果表明,在所研究的模型观察者中,导致对人类性能最佳预测的内部噪声方法各不相同。CHO模型在通道内部噪声情况下对人类观察者性能的预测最佳。HO和LGHO在决策变量内部噪声情况下对人类观察者性能的预测最佳。当前结果可能会指导研究人员在评估和优化医学图像质量时,选择将内部噪声纳入霍特林模型观察者的方法。