Suppr超能文献

工业移动边缘计算中的资源分配和安全感知数据卸载的高级深度学习。

Advanced Deep Learning for Resource Allocation and Security Aware Data Offloading in Industrial Mobile Edge Computing.

机构信息

Department of Computer Science and Technology, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.

Department of Computer Science, Faculty of Computers and Information, Menoufia University, Menoufia, Egypt.

出版信息

Big Data. 2021 Aug;9(4):265-278. doi: 10.1089/big.2020.0284. Epub 2021 Mar 2.

Abstract

The Internet of Things (IoT) is permeating our daily lives through continuous environmental monitoring and data collection. The promise of low latency communication, enhanced security, and efficient bandwidth utilization lead to the shift from mobile cloud computing to mobile edge computing. In this study, we propose an advanced deep reinforcement resource allocation and security-aware data offloading model that considers the constrained computation and radio resources of industrial IoT devices to guarantee efficient sharing of resources between multiple users. This model is formulated as an optimization problem with the goal of decreasing energy consumption and computation delay. This type of problem is non-deterministic polynomial time-hard due to the curse-of-dimensionality challenge, thus, a deep learning optimization approach is presented to find an optimal solution. In addition, a 128-bit Advanced Encryption Standard-based cryptographic approach is proposed to satisfy the data security requirements. Experimental evaluation results show that the proposed model can reduce offloading overhead in terms of energy and time by up to 64.7% in comparison with the local execution approach. It also outperforms the full offloading scenario by up to 13.2%, where it can select some computation tasks to be offloaded while optimally rejecting others. Finally, it is adaptable and scalable for a large number of mobile devices.

摘要

物联网(IoT)通过持续的环境监测和数据收集渗透到我们的日常生活中。低延迟通信、增强的安全性和高效的带宽利用的承诺促使人们从移动云计算向移动边缘计算转移。在这项研究中,我们提出了一种先进的深度强化资源分配和安全感知的数据卸载模型,该模型考虑了工业物联网设备的计算和无线电资源受限的情况,以保证多个用户之间的资源高效共享。该模型被表述为一个优化问题,目标是降低能耗和计算延迟。由于维度诅咒的挑战,这类问题是 NP 难问题,因此,提出了一种深度学习优化方法来寻找最优解。此外,还提出了一种基于 128 位高级加密标准的加密方法来满足数据安全要求。实验评估结果表明,与本地执行方法相比,所提出的模型可以将能量和时间方面的卸载开销降低多达 64.7%。与完全卸载场景相比,它的性能也提高了 13.2%,因为它可以选择一些计算任务进行卸载,同时优化拒绝其他任务。最后,它对大量移动设备具有适应性和可扩展性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验