Suppr超能文献

用于异常检测的因果时间关系学习与特征辨别

Learning Causal Temporal Relation and Feature Discrimination for Anomaly Detection.

作者信息

Wu Peng, Liu Jing

出版信息

IEEE Trans Image Process. 2021;30:3513-3527. doi: 10.1109/TIP.2021.3062192. Epub 2021 Mar 11.

Abstract

Weakly supervised anomaly detection is a challenging task since frame-level labels are not given in the training phase. Previous studies generally employ neural networks to learn features and produce frame-level predictions and then use multiple instance learning (MIL)-based classification loss to ensure the interclass separability of the learned features; all operations simply take into account the current time information as input and ignore the historical observations. According to investigations, these solutions are universal but ignore two essential factors, i.e., the temporal cue and feature discrimination. The former introduces temporal context to enhance the current time feature, and the latter enforces the samples of different categories to be more separable in the feature space. In this article, we propose a method that consists of four modules to leverage the effect of these two ignored factors. The causal temporal relation (CTR) module captures local-range temporal dependencies among features to enhance features. The classifier (CL) projects enhanced features to the category space using the causal convolution and further expands the temporal modeling range. Two additional modules, namely, compactness (CP) and dispersion (DP) modules, are designed to learn the discriminative power of features, where the compactness module ensures the intraclass compactness of normal features, and the dispersion module enhances the interclass dispersion. Extensive experiments on three public benchmarks demonstrate the significance of causal temporal relations and feature discrimination for anomaly detection and the superiority of our proposed method.

摘要

弱监督异常检测是一项具有挑战性的任务,因为在训练阶段没有给出帧级标签。先前的研究通常采用神经网络来学习特征并生成帧级预测,然后使用基于多实例学习(MIL)的分类损失来确保所学习特征的类间可分离性;所有操作都仅将当前时间信息作为输入,而忽略了历史观测值。据调查,这些解决方案具有通用性,但忽略了两个关键因素,即时间线索和特征辨别力。前者引入时间上下文以增强当前时间特征,后者则使不同类别的样本在特征空间中更易于分离。在本文中,我们提出了一种由四个模块组成的方法,以利用这两个被忽略因素的作用。因果时间关系(CTR)模块捕获特征之间的局部范围时间依赖性以增强特征。分类器(CL)使用因果卷积将增强后的特征投影到类别空间,并进一步扩展时间建模范围。另外两个模块,即紧致性(CP)模块和离散性(DP)模块,旨在学习特征的辨别力,其中紧致性模块确保正常特征的类内紧致性,离散性模块增强类间离散性。在三个公共基准上进行的大量实验证明了因果时间关系和特征辨别力对于异常检测的重要性以及我们所提出方法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验