Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA.
The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Nat Commun. 2021 Mar 3;12(1):1424. doi: 10.1038/s41467-021-21592-8.
Genetic studies of the transcriptome help bridge the gap between genetic variation and phenotypes. To maximize the potential of such studies, efficient methods to identify expression quantitative trait loci (eQTLs) and perform fine-mapping and genetic prediction of gene expression traits are needed. Current methods that leverage both total read counts and allele-specific expression to identify eQTLs are generally computationally intractable for large transcriptomic studies. Here, we describe a unified framework that addresses these needs and is scalable to thousands of samples. Using simulations and data from GTEx, we demonstrate its calibration and performance. For example, mixQTL shows a power gain equivalent to a 29% increase in sample size for genes with sufficient allele-specific read coverage. To showcase the potential of mixQTL, we apply it to 49 GTEx tissues and find 20% additional eQTLs (FDR < 0.05, per tissue) that are significantly more enriched among trait associated variants and candidate cis-regulatory elements comparing to the standard approach.
转录组的遗传研究有助于弥合遗传变异与表型之间的差距。为了最大限度地发挥此类研究的潜力,需要有效的方法来识别表达数量性状基因座 (eQTL) 并对基因表达性状进行精细映射和遗传预测。目前利用总读取计数和等位基因特异性表达来识别 eQTL 的方法对于大型转录组研究通常在计算上是不可行的。在这里,我们描述了一个统一的框架,该框架满足这些需求并且可扩展到数千个样本。我们使用模拟和 GTEx 数据来证明其校准和性能。例如,mixQTL 显示出的功效相当于在具有足够等位基因特异性读取覆盖的基因中增加 29%的样本量。为了展示 mixQTL 的潜力,我们将其应用于 49 个 GTEx 组织,并发现了 20%的额外 eQTL(每个组织 FDR < 0.05),与标准方法相比,这些 eQTL 在与性状相关的变体和候选顺式调控元件中更为丰富。