Suppr超能文献

单细胞中等位基因特异性表达的计算方法。

Computational methods for allele-specific expression in single cells.

机构信息

Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.

出版信息

Trends Genet. 2024 Nov;40(11):939-949. doi: 10.1016/j.tig.2024.07.003. Epub 2024 Aug 10.

Abstract

Allele-specific expression (ASE) is a powerful signal that can be used to investigate multiple molecular mechanisms, such as cis-regulatory effects and imprinting. Single-cell RNA-sequencing (scRNA-seq) enables ASE characterization at the resolution of individual cells. In this review, we highlight the computational methods for processing and analyzing single-cell ASE data. We first describe a bioinformatics pipeline to obtain ASE counts from raw reads synthesized from previous literature. We then discuss statistical methods for detecting allelic imbalance and its variability across conditions using scRNA-seq data. In addition, we describe other methods that use single-cell ASE to address specific biological questions. Finally, we discuss future directions and emphasize the need for an integrated, optimized bioinformatics pipeline, and further development of statistical methods for different technologies.

摘要

等位基因特异性表达 (ASE) 是一种强大的信号,可以用于研究多种分子机制,如顺式调控效应和印迹。单细胞 RNA 测序 (scRNA-seq) 能够以单个细胞的分辨率来描述 ASE 特征。在这篇综述中,我们重点介绍了用于处理和分析单细胞 ASE 数据的计算方法。我们首先描述了一个从之前文献中合成的原始读段中获取 ASE 计数的生物信息学流程。然后,我们讨论了使用 scRNA-seq 数据检测等位基因失衡及其在不同条件下变异性的统计方法。此外,我们还描述了其他利用单细胞 ASE 来解决特定生物学问题的方法。最后,我们讨论了未来的方向,并强调需要一个集成的、优化的生物信息学流程,以及针对不同技术的统计方法的进一步发展。

相似文献

1
Computational methods for allele-specific expression in single cells.
Trends Genet. 2024 Nov;40(11):939-949. doi: 10.1016/j.tig.2024.07.003. Epub 2024 Aug 10.
2
ASEP: Gene-based detection of allele-specific expression across individuals in a population by RNA sequencing.
PLoS Genet. 2020 May 11;16(5):e1008786. doi: 10.1371/journal.pgen.1008786. eCollection 2020 May.
4
Detecting cell-type-specific allelic expression imbalance by integrative analysis of bulk and single-cell RNA sequencing data.
PLoS Genet. 2021 Mar 4;17(3):e1009080. doi: 10.1371/journal.pgen.1009080. eCollection 2021 Mar.
5
Single-Cell Allele-Specific Gene Expression Analysis.
Methods Mol Biol. 2019;1935:155-174. doi: 10.1007/978-1-4939-9057-3_11.
7
Allelic imbalance metre (Allim), a new tool for measuring allele-specific gene expression with RNA-seq data.
Mol Ecol Resour. 2013 Jul;13(4):740-5. doi: 10.1111/1755-0998.12110. Epub 2013 Apr 25.
8
Single-Cell RNA Sequencing for Studying Human Cancers.
Annu Rev Biomed Data Sci. 2023 Aug 10;6:1-22. doi: 10.1146/annurev-biodatasci-020722-091857. Epub 2023 Apr 11.
9
Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data.
Bioinformatics. 2009 Dec 15;25(24):3207-12. doi: 10.1093/bioinformatics/btp579. Epub 2009 Oct 6.
10
ASElux: an ultra-fast and accurate allelic reads counter.
Bioinformatics. 2018 Apr 15;34(8):1313-1320. doi: 10.1093/bioinformatics/btx762.

本文引用的文献

1
Detection of allele-specific expression in spatial transcriptomics with spASE.
Genome Biol. 2024 Jul 8;25(1):180. doi: 10.1186/s13059-024-03317-4.
2
Time will tell: comparing timescales to gain insight into transcriptional bursting.
Trends Genet. 2024 Feb;40(2):160-174. doi: 10.1016/j.tig.2023.11.003. Epub 2024 Jan 12.
3
Single-cell long-read sequencing in human cerebral organoids uncovers cell-type-specific and autism-associated exons.
Cell Rep. 2023 Nov 28;42(11):113335. doi: 10.1016/j.celrep.2023.113335. Epub 2023 Oct 26.
5
Single-nucleotide variant calling in single-cell sequencing data with Monopogen.
Nat Biotechnol. 2024 May;42(5):803-812. doi: 10.1038/s41587-023-01873-x. Epub 2023 Aug 17.
8
Genomic-transcriptomic evolution in lung cancer and metastasis.
Nature. 2023 Apr;616(7957):543-552. doi: 10.1038/s41586-023-05706-4. Epub 2023 Apr 12.
10
Method of the year: long-read sequencing.
Nat Methods. 2023 Jan;20(1):6-11. doi: 10.1038/s41592-022-01730-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验