Mehta Swati S, Nadargi Digambar Y, Tamboli Mohaseen S, Alshahrani Thamraa, Minnam Reddy Vasudeva Reddy, Kim Eui Seon, Mulla Imtiaz S, Park Chinho, Suryavanshi Sharad S
School of Physical Sciences, PAH Solapur University, Solapur, MS, 413255, India.
School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea.
Sci Rep. 2021 Mar 3;11(1):5023. doi: 10.1038/s41598-021-84416-1.
Surface area and surface active sites are two important key parameters in enhancing the gas sensing as well as photocatalytic properties of the parent material. With this motivation, herein, we report a facile synthesis of Reduced Graphene Oxide/Tungsten Oxide RGO/WO hierarchical nanostructures via simple hydrothermal route, and their validation in accomplishment of improved HS sensing and highly efficient solar driven photo-degradation of RhB Dye. The self-made RGO using modified Hummer's method, is utilized to develop the RGO/WO nanocomposites with 0.15, 0.3 and 0.5 wt% of RGO in WO matrix. As-developed nanocomposites were analyzed using various physicochemical techniques such as XRD, FE-SEM, TEM/HRTEM, and EDAX. The creation of hierarchic marigold frameworks culminated in a well affiliated mesoporous system, offering efficient gas delivery networks, leading to a significant increase in sensing response to HS. The optimized sensor (RGO/WO with 0.3 wt% loading) exhibited selective response towards HS, which is ~ 13 times higher (R/R = 22.9) than pristine WO (R/R = 1.78) sensor. Looking at bi-directional application, graphene platform boosted the photocatalytic activity (94% degradation of Rhodamine B dye in 210 min) under natural sunlight. The RGO's role in increasing the active surface and surface area is clarified by the HS gas response analysis and solar-driven photo-degradation of RhB dye solution. The outcome of this study provides the new insights to RGO/WO based nanocomposites' research spreadsheet, in view of multidisciplinary applications.
表面积和表面活性位点是增强母体材料气敏性能以及光催化性能的两个重要关键参数。基于此动机,本文报道了通过简单水热法简便合成还原氧化石墨烯/氧化钨(RGO/WO)分级纳米结构,并验证了其在实现改进的硫化氢(HS)传感以及高效太阳能驱动罗丹明B(RhB)染料光降解方面的性能。使用改进的Hummer法自制的RGO用于制备RGO在WO基质中含量为0.15 wt%、0.3 wt%和0.5 wt%的RGO/WO纳米复合材料。使用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜/高分辨率透射电子显微镜(TEM/HRTEM)和能谱分析(EDAX)等各种物理化学技术对所制备的纳米复合材料进行了分析。分级金盏花框架的形成最终形成了一个紧密相连的介孔系统,提供了高效的气体传输网络,导致对HS的传感响应显著增加。优化后的传感器(RGO含量为0.3 wt%的RGO/WO)对HS表现出选择性响应,比原始WO传感器(R/R = 1.78)高约13倍(R/R = 22.9)。从双向应用来看,石墨烯平台在自然阳光下提高了光催化活性(210分钟内罗丹明B染料降解94%)。通过HS气体响应分析和RhB染料溶液的太阳能驱动光降解阐明了RGO在增加活性表面和表面积方面的作用。鉴于多学科应用,本研究结果为基于RGO/WO的纳米复合材料的研究提供了新的见解。