Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568, Bucharest, Romania.
Cell Tissue Res. 2021 Jun;384(3):607-612. doi: 10.1007/s00441-021-03428-5. Epub 2021 Mar 3.
Mitochondria play a key role in cellular energy production and contribute to cell metabolism, homeostasis, intracellular signalling and organelle's quality control, among other roles. Viable, respiratory-competent mitochondria exist also outside the cells. Such extracellular/exogenous mitochondria occur in the bloodstream, being released by platelets, activated monocytes and endothelial progenitor cells. In the nervous system, the cerebrospinal fluid contains mitochondria discharged by astrocytes. Various pathologies, including the cardiovascular and neurodegenerative diseases, are associated with mitochondrial dysfunction. A strategy to reverse dysfunction and restore cell normality is the transplantation of mitochondria (freshly isolated from a healthy tissue) into the zone at risk, such as the ischemic heart and/or damaged nervous tissue. The functional exogenous mitochondria will replace the harmed ones, ensuing cardioprotective and neuroprotective effects. The diversity of transplantation settings (in vitro, in animal models and patients) offered variable answers (including lack of consensus) on efficacy of this strategy. Therefore, a critical overview of the current and future trends in mitochondrial transplantation seems to be required. Here, we outline the recent developments on (i) extracellular mitochondria types and roles, (ii) transplantation protocols, (iii) mechanisms of mitochondrial incorporation, (iv) the benefit of extracellular mitochondria transplantation in human health and diseases and (v) open questions that deserve urgent answers.
线粒体在细胞能量产生中发挥着关键作用,并有助于细胞代谢、内环境稳定、细胞内信号转导和细胞器质量控制等功能。有活力的、呼吸功能健全的线粒体也存在于细胞外。这种细胞外/外源性线粒体存在于血液中,由血小板、活化的单核细胞和内皮祖细胞释放。在神经系统中,脑脊液中含有星形胶质细胞释放的线粒体。包括心血管疾病和神经退行性疾病在内的各种病理与线粒体功能障碍有关。一种逆转功能障碍和恢复细胞正常状态的策略是将线粒体(从健康组织中新鲜分离出来)移植到风险区域,如缺血性心脏和/或受损的神经组织。功能正常的外源性线粒体将取代受损的线粒体,从而产生心脏保护和神经保护作用。移植设置的多样性(体外、动物模型和患者)对该策略的疗效提供了不同的答案(包括缺乏共识)。因此,似乎需要对线粒体移植的当前和未来趋势进行批判性综述。在这里,我们概述了关于(i)细胞外线粒体的类型和作用、(ii)移植方案、(iii)线粒体整合机制、(iv)细胞外线粒体移植在人类健康和疾病中的益处以及(v)值得紧急回答的问题的最新进展。