ESE, Ecology and Ecosystem Health, Institut Agro, Inrae, Rennes, France.
Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada.
Glob Chang Biol. 2021 Jun;27(11):2608-2622. doi: 10.1111/gcb.15576. Epub 2021 Mar 24.
Climate change impacts on marine life in the world ocean are expected to accelerate over the 21st century, affecting the structure and functioning of food webs. We analyzed a key aspect of this issue, focusing on the impact of changes in biomass flow within marine food webs and the resulting effects on ecosystem biomass and production. We used a modeling framework based on a parsimonious quasi-physical representation of biomass flow through the food web, to explore the future of marine consumer biomass and production at the global scale over the 21st century. Biomass flow is determined by three climate-related factors: primary production entering the food web, trophic transfer efficiency describing losses in biomass transfers from one trophic level (TL) to the next, and flow kinetic measuring the speed of biomass transfers within the food web. Using climate projections of three earth system models, we calculated biomass and production at each TL on a 1° latitude ×1° longitude grid of the global ocean under two greenhouse gas emission scenarios. We show that the alterations of the trophic functioning of marine ecosystems, mainly driven by faster and less efficient biomass transfers and decreasing primary production, would lead to a projected decline in total consumer biomass by 18.5% by 2090-2099 relative to 1986-2005 under the "no mitigation policy" scenario. The projected decrease in transfer efficiency is expected to amplify impacts at higher TLs, leading to a 21.3% decrease in abundance of predators and thus to a change in the overall trophic structure of marine ecosystems. Marine animal production is also projected to decline but to a lesser extent than biomass. Our study highlights that the temporal and spatial projected changes in biomass and production would imply direct repercussions on the future of world fisheries and beyond all services provided by Ocean.
预计在 21 世纪,气候变化对世界海洋海洋生物的影响将会加剧,从而影响食物网的结构和功能。我们分析了这一问题的一个关键方面,重点研究了海洋食物网中生物量流动变化的影响,以及对生态系统生物量和生产力的影响。我们使用了一种建模框架,该框架基于对生物量通过食物网流动的简约准物理表示,以探索 21 世纪全球海洋消费者生物量和生产力的未来。生物量流动由三个与气候相关的因素决定:进入食物网的初级生产力、描述从一个营养级(TL)到下一个营养级的生物量转移损失的营养传递效率,以及衡量食物网内生物量转移速度的流动动力学。我们使用三个地球系统模型的气候预测,在两种温室气体排放情景下,计算了全球海洋每 1°纬度×1°经度格网中每个 TL 的生物量和生产力。我们表明,海洋生态系统的营养功能发生了变化,主要是由于生物量转移更快且效率更低,以及初级生产力下降,在“无缓解政策”情景下,到 2090-2099 年,与 1986-2005 年相比,总消费者生物量预计将下降 18.5%。预计传递效率的下降将放大对较高 TL 的影响,导致掠食者丰度下降 21.3%,从而改变海洋生态系统的整体营养结构。海洋动物的产量也预计会下降,但下降幅度小于生物量。我们的研究表明,生物量和生产力的时空变化预计将对世界渔业的未来以及海洋提供的所有服务产生直接影响。