Xia Shuixin, Zhang Xun, Yang Guangzhi, Shi Lvyunhui, Cai Le, Xia Yujie, Yang Junhe, Zheng Shiyou
School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
ACS Appl Mater Interfaces. 2021 Mar 17;13(10):11920-11929. doi: 10.1021/acsami.0c22190. Epub 2021 Mar 4.
Lithium-sulfur batteries (LSBs) are deemed as one of the most promising next generation energy storage system substitutes for conventional lithium ion batteries due to their high energy density, low cost, and environmental friendliness. The practical application of LSBs has long been blocked by the serious lithium polysulfide (LiPS) shuttle effect and notorious Li dendrite growth, inducing fast capacity decay and limited cycling lifespan. Herein, fluorinated carbon prepared via a safe and scalable strategy has rationally been coated on a separator affording bifunctional fluorinated Celgard (F-Celgard) for LSB construction. The F-Celgard shows superior Li flux modulation and LiPS trapping capability, which has been verified by the density function theory calculations. The Li symmetric cells demonstrate long and stable Li plating/stripping with much smaller polarization voltage and dendrite-free Li deposition. In addition, LSBs show superior rate performances with higher discharge capacities and long-time stable cycling over 1000 cycles at 1 C with a low decay rate of ∼0.038% per cycle. With a high sulfur loading (∼5.2 mg cm), a high initial areal capacity of ∼4.2 mAh cm can be obtained with a superior capacity retention of ∼91.8% at 0.2 C. This work demonstrates a facile, cost-effective, and scalable strategy toward highly stable LSBs for practical usage.
锂硫电池(LSBs)因其高能量密度、低成本和环境友好性,被认为是最有前途的下一代储能系统之一,可替代传统锂离子电池。长期以来,锂硫电池的实际应用一直受到严重的多硫化锂(LiPS)穿梭效应和臭名昭著的锂枝晶生长的阻碍,导致快速的容量衰减和有限的循环寿命。在此,通过一种安全且可扩展的策略制备的氟化碳已合理地涂覆在隔膜上,从而得到用于构建锂硫电池的双功能氟化Celgard(F-Celgard)。F-Celgard表现出优异的锂通量调节和多硫化锂捕获能力,这已通过密度泛函理论计算得到验证。锂对称电池展示出长且稳定的锂电镀/剥离过程,极化电压小得多且无枝晶锂沉积。此外,锂硫电池表现出优异的倍率性能,具有更高的放电容量,并且在1 C下经过1000次循环仍能长时间稳定循环,每循环的衰减率低至约0.038%。在高硫负载量(约5.2 mg cm)下,在0.2 C时可获得约4.2 mAh cm的高初始面积容量,容量保持率高达约91.8%。这项工作展示了一种简便、经济高效且可扩展的策略,用于制备实际应用中高度稳定的锂硫电池。