Suppr超能文献

一种基于蛋白质的 Janus 分离器,用于捕获多硫化物并调节锂硫电池中的离子传输。

A Protein-Based Janus Separator for Trapping Polysulfides and Regulating Ion Transport in Lithium-Sulfur Batteries.

机构信息

School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.

College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Chongqing, 400044 (P. R., China.

出版信息

ChemSusChem. 2021 May 20;14(10):2226-2236. doi: 10.1002/cssc.202100568. Epub 2021 Apr 21.

Abstract

Lithium-sulfur (Li-S) batteries are a promising candidate for the next-generation energy storage system, yet their commercialization is primarily hindered by polysulfide shuttling and uncontrollable Li dendrite growth. Here, a protein-based Janus separator was designed and fabricated for suppressing both the shuttle effect and dendrite growth, while facilitating the Li transport. The Li metal-protecting layer was a protein/MoS nanofabric with high ionic conductivity and good Li affinity, thus capable of homogenizing the Li flux and facilitating the Li transport. The polysulfide-trapping layer was a conductive protein nanofabric enabling strong chemical/electrostatic interactions with polysulfides. Combination of the two layers was achieved by an integrated electrospinning method, yielding a robust and integral Janus separator. As a result, a long-lived symmetric Li|Li cell (>700 h) with stable cycling performance was demonstrated. More significantly, the resulting Li-S battery delivered greatly improved electrochemical performance, including excellent rate capacity and remarkable cycle stability (with a low decay rate of 0.063 % per cycle at 0.5 A g over 500 cycles). This study demonstrates the effectiveness of the Janus separator configurations for simultaneously addressing the shuttle effect and dendrite growth issues of Li-S batteries and broadens the applications of electrospinning in electrochemistry community.

摘要

锂硫(Li-S)电池是下一代储能系统的有前途的候选者,但它们的商业化主要受到多硫化物穿梭和不可控锂枝晶生长的阻碍。在这里,设计并制造了一种基于蛋白质的 Janus 分离器,以抑制穿梭效应和枝晶生长,同时促进 Li 传输。Li 金属保护层是具有高离子导电性和良好 Li 亲和力的蛋白质/MoS 纳米结构,因此能够均匀化 Li 通量并促进 Li 传输。多硫化物捕获层是一种具有强化学/静电相互作用的导电蛋白质纳米结构。通过集成的静电纺丝方法实现了两层的组合,得到了坚固且完整的 Janus 分离器。结果,展示了具有长循环寿命的稳定对称 Li|Li 电池(>700 h)。更重要的是,所得到的 Li-S 电池表现出大大改善的电化学性能,包括优异的倍率容量和显著的循环稳定性(在 500 次循环中以 0.5 A g 的低衰减率 0.063%/循环)。这项研究证明了 Janus 分离器配置在同时解决 Li-S 电池的穿梭效应和枝晶生长问题方面的有效性,并拓宽了静电纺丝在电化学领域的应用。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验