DMMT, Università degli Studi di Brescia, viale Europa, 11, 25121 Brescia, Italy.
Dipartimento di Matematica, Università degli Studi di Pavia, via Ferrata 5, 27100 Pavia, Italy.
Math Biosci. 2021 May;335:108573. doi: 10.1016/j.mbs.2021.108573. Epub 2021 Mar 2.
The assessment and the management of the risks linked to insect pests can be supported by the use of physiologically-based demographic models. These models are useful in population ecology to simulate the dynamics of stage-structured populations, by means of functions (e.g., development, mortality and fecundity rate functions) realistically representing the nonlinear individuals physiological responses to environmental forcing variables. Since density-dependent responses are important regulating factors in population dynamics, we propose a nonlinear physiologically-based Kolmogorov model describing the dynamics of a stage-structured population in which a time-dependent mortality rate is coupled with a nonlocal density-dependent term. We prove existence and uniqueness of the solution for this resulting highly nonlinear partial differential equation. Then, the equation is discretized by finite volumes in space and semi-implicit backward Euler scheme in time. The model is applied for simulating the population dynamics of the fall armyworm moth (Spodoptera frugiperda), a highly invasive pest threatening agriculture worldwide.
利用基于生理学的人口统计模型可以支持对与昆虫害虫相关的风险进行评估和管理。这些模型在种群生态学中非常有用,可以通过函数(例如,发育、死亡率和生育率函数)来模拟具有阶段结构的种群动态,这些函数真实地代表了个体对环境胁迫变量的非线性生理反应。由于密度依赖性反应是种群动态的重要调节因素,我们提出了一个非线性基于生理学的 Kolmogorov 模型,用于描述一个阶段结构的种群动态,其中时变死亡率与非局部密度依赖性项耦合。我们证明了这个产生的高度非线性偏微分方程的解的存在性和唯一性。然后,通过有限体积法在空间上离散化,并采用半隐式向后 Euler 格式在时间上离散化。该模型用于模拟秋季行军虫蛾(Spodoptera frugiperda)的种群动态,这是一种具有高度入侵性的害虫,威胁着全球农业。