Hernández-Montenegro Juan David, Palin Richard M, Zuluaga Carlos A, Hernández-Uribe David
Department of Geosciences, Universidad Nacional de Colombia, Bogotá, Colombia.
Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
Sci Rep. 2021 Mar 4;11(1):5263. doi: 10.1038/s41598-021-84300-y.
Archean (4.0-2.5 Ga) tonalite-trondhjemite-granodiorite (TTG) terranes represent fragments of Earth's first continents that formed via high-grade metamorphism and partial melting of hydrated basaltic crust. While a range of geodynamic regimes can explain the production of TTG magmas, the processes by which they separated from their source and acquired distinctive geochemical signatures remain uncertain. This limits our understanding of how the continental crust internally differentiates, which in turn controls its potential for long-term stabilization as cratonic nuclei. Here, we show via petrological modeling that hydrous Archean mafic crust metamorphosed in a non-plate tectonic regime produces individual pulses of magma with major-, minor-, and trace-element signatures resembling-but not always matching-natural Archean TTGs. Critically, magma hybridization due to co-mingling and accumulation of multiple melt fractions during ascent through the overlying crust eliminates geochemical discrepancies identified when assuming that TTGs formed via crystallization of discrete melt pulses. We posit that much Archean continental crust is made of hybrid magmas that represent up to ~ 40 vol% of partial melts produced along thermal gradients of 50-100 °C/kbar, characteristic of overthickened mafic Archean crust at the head of a mantle plume, crustal overturns, or lithospheric peels.
太古宙(40 - 25亿年前)英云闪长岩 - 奥长花岗岩 - 花岗闪长岩(TTG)地体代表了地球首批大陆的碎片,这些碎片是通过水化玄武质地壳的高级变质作用和部分熔融形成的。虽然一系列地球动力学机制可以解释TTG岩浆的产生,但其从源区分离并获得独特地球化学特征的过程仍不明确。这限制了我们对大陆地壳内部如何分化的理解,而大陆地壳的分化反过来又控制着其作为克拉通核长期稳定的潜力。在此,我们通过岩石学模拟表明,在非板块构造体制下变质的含水太古宙镁铁质地壳会产生具有主量、微量和痕量元素特征的单个岩浆脉冲,这些特征与天然太古宙TTG相似,但并不总是匹配。至关重要的是,在通过上覆地壳上升过程中,由于多种熔体组分的混合和聚集导致的岩浆混合消除了假设TTG由离散熔体脉冲结晶形成时所识别出的地球化学差异。我们认为,许多太古宙大陆地壳是由混合岩浆构成的,这些混合岩浆占沿着50 - 100℃/千巴热梯度产生的部分熔体的体积比例高达约40%,这是地幔柱头部、地壳翻转或岩石圈剥离处增厚的镁铁质太古宙地壳的特征。