School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
Geology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
Nature. 2023 Mar;615(7952):450-454. doi: 10.1038/s41586-022-05665-2. Epub 2023 Mar 15.
The ancient stable continents are up to 250 km deep, with roots extending into the diamond stability field. These cratons owe their mechanical strength to being cool and rigid, features inherited from extensive melt extraction. The most prominent model for craton formation anticipates dominant melting at relatively shallow depth (50-100 km) above diamond stability, followed by later imbrication to form the deeper roots. Here we present results from thermodynamic and geochemical modelling of melting at sufficiently high temperatures to produce the very magnesian olivine of cratonic roots. The new closed-system and open-system modelling reproduces the observed cratonic mantle mineral compositions by deep (about 200 km) and very hot melting (≥1,800 °C), obviating the need for shallow melting and stacking. The modelled highly magnesian liquids (komatiites) evolve to Al-enriched and Ti-depleted forms, as observed in the greenstone belts at the fossil surface of cratons. The paucity of Ti-depleted komatiite implies that advanced closed-system isochemical melting (>1,825 °C) was much less common than open-system interaction between deeper liquids and melting of existing refractory mantle. The highly refractory compositions of diamond inclusion minerals could imply preferential diamond growth in the more reducing parts of the cratonic root, depleted by ultra-hot melting in response to heat plumes from a deeper former boundary layer that vanished at the end of the Archaean.
古老的稳定大陆深达 250 公里,其根延伸至金刚石稳定场。这些克拉通之所以具有机械强度,是因为它们的冷却和刚性,这些特征是从广泛的熔体提取中继承而来的。克拉通形成的最突出模型预测,主要的熔融发生在相对较浅的深度(金刚石稳定之上 50-100 公里),随后是后来的叠置,以形成更深的根。在这里,我们提出了在足够高的温度下进行熔融的热力学和地球化学模型结果,以产生克拉通根非常镁橄榄石。新的封闭系统和开放系统模拟通过深(约 200 公里)和非常热的熔融(≥1800°C)再现了观察到的克拉通地幔矿物组成,从而消除了浅层熔融和堆叠的需要。模拟的高镁质液体(科马提岩)演变成富含 Al 和贫 Ti 的形式,如在克拉通化石表面的绿岩带中观察到的那样。Ti 贫化科马提岩的缺乏意味着,与更深的液体之间的先进封闭系统等化学熔融(>1825°C)相比,开放系统相互作用更为常见,后者是在现有难熔地幔的熔融过程中发生的。金刚石包裹体矿物的高难熔成分可能意味着,在克拉通根的更还原部分,金刚石优先生长,这些部分由于来自更深的前边界层的热羽流的超热熔融而耗尽,而前边界层在太古代末期消失。