Caballero Armando, Villanueva Beatriz, Druet Tom
Centro de Investigación Mariña, Departamento de Bioquímica, Genética e Inmunología, Edificio CC Experimentais Universidade de Vigo Vigo Spain.
Departamento de Mejora Genética Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid Spain.
Evol Appl. 2020 Oct 23;14(2):416-428. doi: 10.1111/eva.13126. eCollection 2021 Feb.
The inbreeding coefficient () of individuals can be estimated from molecular marker data, such as SNPs, using measures of homozygosity of individual markers or runs of homozygosity (ROH) across the genome. These different measures of can then be used to estimate the rate of inbreeding depression (ID) for quantitative traits. Some recent simulation studies have investigated the accuracy of this estimation with contradictory results. Whereas some studies suggest that estimates of inbreeding from ROH account more accurately for ID, others suggest that inbreeding measures from SNP-by-SNP homozygosity giving a large weight to rare alleles are more accurate. Here, we try to give more light on this issue by carrying out a set of computer simulations considering a range of population genetic parameters and population sizes. Our results show that the previous studies are indeed not contradictory. In populations with low effective size, where relationships are more tight and selection is relatively less intense, measures based on ROH provide very accurate estimates of ID whereas SNP-by-SNP-based measures with high weight to rare alleles can show substantial upwardly biased estimates of ID. However, in populations of large effective size, with more intense selection and trait allele frequencies expected to be low if they are deleterious for fitness because of purifying selection, average estimates of ID from SNP-by-SNP-based values become unbiased or slightly downwardly biased and those from ROH-based values become slightly downwardly biased. The noise attached to all these estimates, nevertheless, can be very high in large-sized populations. We also investigate the relationship between the different measures and the homozygous mutation load, which has been suggested as a proxy of inbreeding depression.
个体的近亲繁殖系数()可通过分子标记数据(如单核苷酸多态性,SNPs),利用单个标记的纯合性测量或全基因组纯合性片段(ROH)来估计。然后,这些不同的 测量方法可用于估计数量性状的近亲繁殖衰退率(ID)。最近的一些模拟研究调查了这种估计的准确性,但结果相互矛盾。一些研究表明,从ROH估计的近亲繁殖能更准确地解释ID,而另一些研究则表明,对稀有等位基因给予较大权重的逐个SNP纯合性近亲繁殖测量更准确。在这里,我们通过进行一系列考虑了一系列群体遗传参数和群体大小的计算机模拟,试图更清楚地了解这个问题。我们的结果表明,先前的研究确实并不矛盾。在有效规模较低的群体中,亲缘关系更紧密,选择相对不那么强烈,基于ROH的 测量能非常准确地估计ID,而对稀有等位基因给予高权重的逐个SNP的 测量可能会显示出ID的大幅向上偏差估计。然而,在有效规模较大的群体中,选择更强烈,如果有害等位基因因纯化选择对适应性不利,其频率预计较低,基于逐个SNP的 值对ID的平均估计变得无偏或略有向下偏差,而基于ROH的 值的估计则略有向下偏差。然而,在大型群体中,所有这些估计所附带的噪声可能非常高。我们还研究了不同的 测量与纯合突变负荷之间的关系,纯合突变负荷已被建议作为近亲繁殖衰退的一个代理指标。