Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
Immunol Cell Biol. 2021 May;99(5):509-520. doi: 10.1111/imcb.12450.
The discovery of Langerhans and microscopic description of islets in the pancreas were crucial steps in the discovery of insulin. Over the past 150 years, many discoveries in islet biology and type 1 diabetes have been made using powerful microscopic techniques. In the past decade, combination of new probes, animal and tissue models, application of new biosensors and automation of light and electron microscopic methods and other (sub)cellular imaging modalities have proven their potential in understanding the beta cell under (patho)physiological conditions. The imaging evolution, from fluorescent jellyfish to real-time intravital functional imaging, the revolution in automation and data handling and the increased resolving power of analytical imaging techniques are now converging. Here, we review innovative approaches that address islet biology from new angles by studying cells and molecules at high spatiotemporal resolution and in live models. Broad implementation of these cellular imaging techniques will shed new light on cause/consequence of (mal)function in islets of Langerhans in the years to come.
郎格汉斯和胰腺胰岛的微观描述的发现是胰岛素发现过程中的关键步骤。在过去的 150 年中,使用强大的显微镜技术在胰岛生物学和 1 型糖尿病方面取得了许多发现。在过去的十年中,新型探针的结合、动物和组织模型的应用、新型生物传感器的应用以及光和电子显微镜方法的自动化和其他(亚)细胞成像方式的自动化,已经证明了它们在理解(病理)生理条件下β细胞方面的潜力。从荧光水母到实时活体功能成像的成像演变、自动化和数据处理的革命以及分析成像技术的分辨率的提高正在汇聚。在这里,我们通过研究高时空分辨率和活体模型中的细胞和分子,从新的角度回顾了创新的方法,这些方法可以解决胰岛生物学问题。这些细胞成像技术的广泛应用将在未来几年为胰岛的(功能)失调的因果关系提供新的认识。