Abadie Cyril, Tcherkez Guillaume
Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070 Beaucouzé, France.
Research School of Biology, College of Science, Australian National University, Canberra 2601, Australia.
Plants (Basel). 2021 Feb 24;10(3):427. doi: 10.3390/plants10030427.
Measuring the carbon flux through metabolic pathways in intact illuminated leaves remains challenging because of, e.g., isotopic dilution by endogenous metabolites, the impossibility to reach isotopic steady state, and the occurrence of multiple pools. In the case of photorespiratory intermediates, our knowledge of the partitioning between photorespiratory recycling, storage, and utilization by other pathways is thus rather limited. There has been some controversy as to whether photorespiratory glycine and serine may not be recycled, thus changing the apparent stoichiometric coefficient between photorespiratory O fixation and CO release. We describe here an isotopic method to trace the fates of glycine, serine and glycerate, taking advantage of positional C content with NMR and isotopic analyses by LC-MS. This technique is well-adapted to show that the proportion of glycerate, serine and glycine molecules escaping photorespiratory recycling is very small.
测量完整光照叶片中通过代谢途径的碳通量仍然具有挑战性,例如,由于内源性代谢物的同位素稀释、无法达到同位素稳态以及多个库的存在。就光呼吸中间体而言,我们对光呼吸循环、储存以及其他途径利用之间分配的了解相当有限。关于光呼吸甘氨酸和丝氨酸是否可能不被循环利用,从而改变光呼吸氧固定和二氧化碳释放之间的表观化学计量系数,一直存在一些争议。我们在此描述一种同位素方法,利用核磁共振的位置碳含量和液相色谱 - 质谱联用的同位素分析来追踪甘氨酸、丝氨酸和甘油酸的去向。该技术非常适合表明逃避光呼吸循环的甘油酸、丝氨酸和甘氨酸分子的比例非常小。