文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

钠改性和有机改性蒙脱石/香精油纳米杂化物对苯乙烯原位自由基聚合动力学的影响

Effect of Na- and Organo-Modified Montmorillonite/Essential Oil Nanohybrids on the Kinetics of the In Situ Radical Polymerization of Styrene.

作者信息

Tsagkalias Ioannis S, Loukidi Alexandra, Chatzimichailidou Stella, Salmas Constantinos E, Giannakas Aris E, Achilias Dimitris S

机构信息

Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

Department of Material Science & Engineering, University of Ioannina, 45110 Ioannina, Greece.

出版信息

Nanomaterials (Basel). 2021 Feb 13;11(2):474. doi: 10.3390/nano11020474.


DOI:10.3390/nano11020474
PMID:33668423
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7918516/
Abstract

The great concern about the use of hazardous additives in food packaging materials has shown the way to new bio-based materials, such as nanoclays incorporating bioactive essential oils (EO). One of the still unresolved issues is the proper incorporation of these materials into a polymeric matrix. The in situ polymerization seems to be a promising technique, not requiring high temperatures or toxic solvents. Therefore, in this study, the bulk radical polymerization of styrene was investigated in the presence of sodium montmorillonite (NaMMT) and organo-modified montmorillonite (orgMMT) including thyme (TO), oregano (OO), and basil (BO) essential oil. It was found that the hydroxyl groups present in the main ingredients of TO and OO may participate in side retardation reactions leading to lower polymerization rates (measured gravimetrically by the variation of monomer conversion with time) accompanied by higher polymer average molecular weight (measured via GPC). The use of BO did not seem to affect significantly the polymerization kinetics and polymer MWD. These results were verified from independent experiments using model compounds, thymol, carvacrol and estragol instead of the clays. Partially intercalated structures were revealed from XRD scans. The glass transition temperature (from DSC) and the thermal stability (from TGA) of the nanocomposites formed were slightly increased from 95 to 98 °C and from 435 to 445 °C, respectively. Finally, better dispersion was observed when orgMMT was added instead of NaMMT.

摘要

对食品包装材料中使用有害添加剂的高度关注为新型生物基材料指明了方向,比如含有生物活性精油(EO)的纳米粘土。尚未解决的问题之一是如何将这些材料恰当地掺入聚合物基体中。原位聚合似乎是一种很有前景的技术,不需要高温或有毒溶剂。因此,在本研究中,研究了在钠蒙脱石(NaMMT)和有机改性蒙脱石(orgMMT)存在下苯乙烯的本体自由基聚合,其中orgMMT包含百里香(TO)、牛至(OO)和罗勒(BO)精油。发现TO和OO主要成分中存在的羟基可能参与副反应导致聚合速率降低(通过单体转化率随时间的变化重量法测量),同时聚合物平均分子量升高(通过凝胶渗透色谱法测量)。使用BO似乎对聚合动力学和聚合物分子量分布没有显著影响。使用模型化合物百里香酚、香芹酚和草蒿脑代替粘土进行的独立实验验证了这些结果。X射线衍射扫描揭示了部分插层结构。所形成的纳米复合材料的玻璃化转变温度(通过差示扫描量热法)和热稳定性(通过热重分析法)分别从95℃略微升高到98℃和从435℃升高到445℃。最后,添加orgMMT时比添加NaMMT时观察到更好的分散性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/c1178bf4e5b3/nanomaterials-11-00474-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/6e85c55a50b5/nanomaterials-11-00474-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/4ccd9b17ab4a/nanomaterials-11-00474-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/7c4a0e8167d3/nanomaterials-11-00474-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/86a20a6452b4/nanomaterials-11-00474-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/83a35060e150/nanomaterials-11-00474-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/3986b4224e01/nanomaterials-11-00474-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/d34fc0a7170b/nanomaterials-11-00474-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/8456c13da502/nanomaterials-11-00474-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/44dd3b5823a5/nanomaterials-11-00474-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/39cc01a033f3/nanomaterials-11-00474-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/1ece3e3be83f/nanomaterials-11-00474-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/0efe2194a62a/nanomaterials-11-00474-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/c1178bf4e5b3/nanomaterials-11-00474-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/6e85c55a50b5/nanomaterials-11-00474-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/4ccd9b17ab4a/nanomaterials-11-00474-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/7c4a0e8167d3/nanomaterials-11-00474-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/86a20a6452b4/nanomaterials-11-00474-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/83a35060e150/nanomaterials-11-00474-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/3986b4224e01/nanomaterials-11-00474-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/d34fc0a7170b/nanomaterials-11-00474-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/8456c13da502/nanomaterials-11-00474-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/44dd3b5823a5/nanomaterials-11-00474-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/39cc01a033f3/nanomaterials-11-00474-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/1ece3e3be83f/nanomaterials-11-00474-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/0efe2194a62a/nanomaterials-11-00474-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/7918516/c1178bf4e5b3/nanomaterials-11-00474-g010.jpg

相似文献

[1]
Effect of Na- and Organo-Modified Montmorillonite/Essential Oil Nanohybrids on the Kinetics of the In Situ Radical Polymerization of Styrene.

Nanomaterials (Basel). 2021-2-13

[2]
Na-Montmorillonite vs. Organically Modified Montmorillonite as Essential Oil Nanocarriers for Melt-Extruded Low-Density Poly-Ethylene Nanocomposite Active Packaging Films with a Controllable and Long-Life Antioxidant Activity.

Nanomaterials (Basel). 2020-5-27

[3]
Performance of Thyme Oil@Na-Montmorillonite and Thyme Oil@Organo-Modified Montmorillonite Nanostructures on the Development of Melt-Extruded Poly-L-lactic Acid Antioxidant Active Packaging Films.

Molecules. 2022-2-11

[4]
Designing Antioxidant and Antimicrobial Polyethylene Films with Bioactive Compounds/Clay Nanohybrids for Potential Packaging Applications.

Molecules. 2023-3-25

[5]
Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique.

Polymers (Basel). 2017-9-8

[6]
Development of Bio-Composites with Enhanced Antioxidant Activity Based on Poly(lactic acid) with Thymol, Carvacrol, Limonene, or Cinnamaldehyde for Active Food Packaging.

Polymers (Basel). 2021-10-23

[7]
Synergistic Effects of Nanocomposite Films Containing Essential Oil Nanoemulsions in Combination with Ionizing Radiation for Control of Rice Weevil Sitophilus oryzae in Stored Grains.

J Food Sci. 2019-5-20

[8]
Effect of Bifunctional Montmorillonite on the Thermal and Tribological Properties of Polystyrene/Montmorillonite Nanocomposites.

Polymers (Basel). 2019-5-8

[9]
Molecular characterisation of a bio-based active packaging containing Origanum vulgare L. essential oil using pyrolysis gas chromatography-mass spectrometry.

J Sci Food Agric. 2016-7

[10]
Self-assembly of gelators confined within the nano-scale interlayer space of organo-montmorillonite.

Phys Chem Chem Phys. 2008-11-21

引用本文的文献

[1]
Synthesis of Novel Nanocomposite Materials with Enhanced Antimicrobial Activity based on Poly(Ethylene Glycol Methacrylate)s with Ag, TiO or ZnO Nanoparticles.

Nanomaterials (Basel). 2024-1-31

[2]
Kiwi Fruits Preservation Using Novel Edible Active Coatings Based on Rich Thymol Halloysite Nanostructures and Chitosan/Polyvinyl Alcohol Gels.

Gels. 2022-12-13

[3]
Preparation of Pd Nanoparticles Stabilized by Modified Montmorillonite for Efficient Hydrodeoxygenation of Lignin-Derived Phenolic Compounds in Water.

Front Chem. 2022-8-5

[4]
Development of Bio-Composites with Enhanced Antioxidant Activity Based on Poly(lactic acid) with Thymol, Carvacrol, Limonene, or Cinnamaldehyde for Active Food Packaging.

Polymers (Basel). 2021-10-23

[5]
Evaluation of the Potential of Modified Calcium Carbonate as a Carrier for Unsaturated Fatty Acids in Oxygen Scavenging Applications.

Materials (Basel). 2021-9-1

本文引用的文献

[1]
Kinetic Study of the Thermal and Thermo-Oxidative Degradations of Polystyrene Reinforced with Multiple-Cages POSS.

Polymers (Basel). 2020-11-19

[2]
Effect of Lemon Waste Natural Dye and Essential Oil Loaded into Laminar Nanoclays on Thermomechanical and Color Properties of Polyester Based Bionanocomposites.

Polymers (Basel). 2020-6-28

[3]
Na-Montmorillonite vs. Organically Modified Montmorillonite as Essential Oil Nanocarriers for Melt-Extruded Low-Density Poly-Ethylene Nanocomposite Active Packaging Films with a Controllable and Long-Life Antioxidant Activity.

Nanomaterials (Basel). 2020-5-27

[4]
Essential Oils as Antimicrobial Agents-Myth or Real Alternative?

Molecules. 2019-6-5

[5]
Effect of Graphene oxide or Functionalized Graphene Oxide on the Copolymerization Kinetics of Styrene/n-butyl Methacrylate.

Polymers (Basel). 2019-6-4

[6]
The Use of Montmorillonite (MMT) in Food Nanocomposites: Methods of Incorporation, Characterization of MMT/Polymer Nanocomposites and Main Consequences in the Properties.

Recent Pat Food Nutr Agric. 2020

[7]
Development of LLDPE based active nanocomposite films with nanoclays impregnated with volatile compounds.

Food Res Int. 2018-2-21

[8]
An Overview of the Biological Effects of Some Mediterranean Essential Oils on Human Health.

Biomed Res Int. 2017-11-5

[9]
Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations.

Food Chem. 2008-6-1

[10]
Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

J Med Life. 2014

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索