da Costa Talles Barcelos, da Silva Meuris Gurgel Carlos, Vieira Melissa Gurgel Adeodato
School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 13083-852 Campinas, Brazil.
Polymers (Basel). 2021 Feb 19;13(4):623. doi: 10.3390/polym13040623.
In a scenario of high demand, low availability, and high economic value, the recovery of rare-earth metals from wastewater is economically and environmentally attractive. Bioadsorption is a promising method as it offers simple design and operation. The aim of this study was to investigate lanthanum bioadsorption using a polymeric bioadsorbent of sericin/alginate/poly(vinyl alcohol)-based biocomposite. Batch system assays were performed to evaluate the equilibrium, thermodynamics, regeneration, and selectivity of bioadsorption. The maximum capture amount of lanthanum at equilibrium was 0.644 mmol/g at 328 K. The experimental equilibrium data were better fitted by Langmuir and Dubinin-Radushkevich isotherms. Ion exchange mechanism between calcium and lanthanum (2:3 ratio) was confirmed by bioadsorption isotherms. Thermodynamic quantities showed that the process of lanthanum bioadsorption was spontaneous (-17.586, -19.244, and -20.902 kJ/mol), endothermic (+15.372 kJ/mol), and governed by entropic changes (+110.543 J/mol·K). The reusability of particles was achieved using 0.1 mol/L HNO/Ca(NO) solution for up to five regeneration cycles. The bioadsorbent selectivity followed the order of lanthanum > cadmium > zinc > nickel. Additionally, characterization of the biocomposite prior to and post lanthanum bioadsorption showed low porosity (9.95 and 12.35%), low specific surface area (0.054 and 0.019 m/g), amorphous character, and thermal stability at temperatures up to 473 K. This study shows that sericin/ alginate/poly(vinyl alcohol)-based biocomposites are effective in the removal and recovery of lanthanum from water.
在需求高、可用性低且经济价值高的情况下,从废水中回收稀土金属在经济和环境方面都具有吸引力。生物吸附是一种很有前景的方法,因为它的设计和操作简单。本研究的目的是研究使用基于丝胶蛋白/海藻酸钠/聚乙烯醇的生物复合材料的聚合物生物吸附剂对镧的生物吸附。进行了间歇系统试验以评估生物吸附的平衡、热力学、再生和选择性。在328K时,镧在平衡时的最大捕获量为0.644mmol/g。实验平衡数据与Langmuir和Dubinin-Radushkevich等温线拟合得更好。生物吸附等温线证实了钙和镧之间的离子交换机制(2:3比例)。热力学量表明,镧生物吸附过程是自发的(-17.586、-19.244和-20.902kJ/mol)、吸热的(+15.372kJ/mol),并受熵变控制(+110.543J/mol·K)。使用0.1mol/L HNO/Ca(NO)溶液可实现颗粒的可重复使用性,最多可达五个再生循环。生物吸附剂的选择性顺序为镧>镉>锌>镍。此外,镧生物吸附前后生物复合材料的表征显示孔隙率低(9.95和12.35%)、比表面积低(0.054和0.019m/g)、无定形特征以及在高达473K的温度下具有热稳定性。本研究表明,基于丝胶蛋白/海藻酸钠/聚乙烯醇的生物复合材料在从水中去除和回收镧方面是有效的。