Suppr超能文献

不同近红外光谱预处理方法对富腐殖质-粘土土壤参数 C 和 N 的推导评估。

An Evaluation of Different NIR-Spectral Pre-Treatments to Derive the Soil Parameters C and N of a Humus-Clay-Rich Soil.

机构信息

Chair of Plant Nutrition, Technical University Munich, Emil-Ramann-Str. 2, D-85350 Freising, Germany.

Chair of Agricultural Systems Engineering, Technical University Munich, Dürnast 4, D-85354 Freising, Germany.

出版信息

Sensors (Basel). 2021 Feb 18;21(4):1423. doi: 10.3390/s21041423.

Abstract

Near-infrared reflectance spectroscopy (NIRS) was successfully used in this study to measure soil properties, mainly C and N, requiring spectral pre-treatments. Calculations in this evaluation were carried out using multivariate statistical procedures with preceding pre-treatment procedures of the spectral data. Such transformations could remove noise, highlight features, and extract essential wavelengths for quantitative predictions. This frequently significantly improved the predictions. Since selecting the appropriate transformation was not straightforward due to the large numbers of available methods, more comprehensive insight into choosing appropriate and optimized pre-treatments was required. Therefore, the objectives of this study were (i) to compare various pre-processing transformations of spectral data to determine their suitability for modeling soil C and N using NIR spectra (55 pre-treatment procedures were tested), and (ii) to determine which wavelengths were most important for the prediction of C and N. The investigations were carried out on an arable field in South Germany with a soil type of Calcaric Fluvic Relictigleyic Phaeozem (Epigeoabruptic and Pantoclayic), created in the flooding area of the Isar River. The best fit and highest model accuracy for the C (Ct, Corg, and Ccarb) and N models in the calibration and validation modes were achieved using derivations with Savitzky-Golay (SG). This enabled us to calculate the Ct, Corg, and N with an R higher than 0.98/0.86 and an ratio of performance to the interquartile range (RPIQ) higher than 10.9/4.1 (calibration/validation).

摘要

近红外反射光谱(NIRS)技术成功地应用于本研究,用于测量土壤特性,主要是 C 和 N,需要光谱预处理。本评估中的计算使用多元统计程序,对光谱数据进行了预处理。这些变换可以去除噪声,突出特征,并提取用于定量预测的基本波长。这通常可以显著提高预测精度。由于由于可用方法数量众多,因此选择适当的变换并不简单,因此需要更全面地了解选择适当和优化的预处理方法。因此,本研究的目的是:(i)比较光谱数据的各种预处理变换,以确定它们是否适合使用近红外光谱建模土壤 C 和 N(测试了 55 种预处理方法);(ii)确定对于 C 和 N 的预测,哪些波长最重要。研究在德国南部的一个耕地进行,土壤类型为钙质富铁淋溶灰壤(层状和潘托粘壤土),是在伊萨尔河泛滥区形成的。在 Calcaric Fluvic Relictigleyic Phaeozem(Epigeoabruptic 和 Pantoclayic)土壤中,使用 Savitzky-Golay(SG)衍生法对 C(Ct、Corg 和 Ccarb)和 N 模型进行了最佳拟合和最高的模型精度校准和验证模式。这使我们能够计算 Ct、Corg 和 N 的 R 值高于 0.98/0.86,性能与四分位距比(RPIQ)高于 10.9/4.1(校准/验证)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d801/7922103/cb767f563c38/sensors-21-01423-g001.jpg

相似文献

2
Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy.
Environ Monit Assess. 2018 Aug 13;190(9):513. doi: 10.1007/s10661-018-6898-6.
3
Combination of efficient signal pre-processing and optimal band combination algorithm to predict soil organic matter through visible and near-infrared spectra.
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Oct 15;240:118553. doi: 10.1016/j.saa.2020.118553. Epub 2020 May 28.
4
Prediction of soil organic carbon in a coal mining area by Vis-NIR spectroscopy.
PLoS One. 2018 Apr 20;13(4):e0196198. doi: 10.1371/journal.pone.0196198. eCollection 2018.
5
Effects of Subsetting by Parent Materials on Prediction of Soil Organic Matter Content in a Hilly Area Using Vis-NIR Spectroscopy.
PLoS One. 2016 Mar 14;11(3):e0151536. doi: 10.1371/journal.pone.0151536. eCollection 2016.
7
When does stratification of a subtropical soil spectral library improve predictions of soil organic carbon content?
Sci Total Environ. 2020 Oct 1;737:139895. doi: 10.1016/j.scitotenv.2020.139895. Epub 2020 Jun 5.
10
Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques.
Sci Total Environ. 2018 Mar;616-617:147-155. doi: 10.1016/j.scitotenv.2017.10.323. Epub 2017 Nov 9.

引用本文的文献

1
3
Rapid determination of triglyceride and glucose levels in induced by high-sugar or high-fat diets based on near-infrared spectroscopy.
Heliyon. 2023 Jun 20;9(6):e17389. doi: 10.1016/j.heliyon.2023.e17389. eCollection 2023 Jun.
5
Global calibration for non-targeted fraud detection in quinoa flour using portable hyperspectral imaging and chemometrics.
Curr Res Food Sci. 2023 Mar 17;6:100483. doi: 10.1016/j.crfs.2023.100483. eCollection 2023.
6
A Review of Machine Learning for Near-Infrared Spectroscopy.
Sensors (Basel). 2022 Dec 13;22(24):9764. doi: 10.3390/s22249764.
8
Determination of Soil Constituents Using Shifted Excitation Raman Difference Spectroscopy.
Appl Spectrosc. 2022 Jun;76(6):712-722. doi: 10.1177/00037028211064907. Epub 2022 Feb 9.

本文引用的文献

2
A Review of the Principles and Applications of Near-Infrared Spectroscopy to Characterize Meat, Fat, and Meat Products.
Appl Spectrosc. 2017 Jul;71(7):1403-1426. doi: 10.1177/0003702817709299. Epub 2017 May 23.
5
Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy.
PLoS One. 2013 Jun 19;8(6):e66409. doi: 10.1371/journal.pone.0066409. Print 2013.
7
The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils.
Environ Pollut. 2002;116 Suppl 1:S277-84. doi: 10.1016/s0269-7491(01)00259-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验