Suppr超能文献

一种用于立体匹配的二维-三维互补网络。

A Joint 2D-3D Complementary Network for Stereo Matching.

机构信息

College of Computer, National University of Defense Technology, Changsha 410073, China.

出版信息

Sensors (Basel). 2021 Feb 18;21(4):1430. doi: 10.3390/s21041430.

Abstract

Stereo matching is an important research field of computer vision. Due to the dimension of cost aggregation, current neural network-based stereo methods are difficult to trade-off speed and accuracy. To this end, we integrate fast 2D stereo methods with accurate 3D networks to improve performance and reduce running time. We leverage a 2D encoder-decoder network to generate a rough disparity map and construct a disparity range to guide the 3D aggregation network, which can significantly improve the accuracy and reduce the computational cost. We use a stacked hourglass structure to refine the disparity from coarse to fine. We evaluated our method on three public datasets. According to the KITTI official website results, Our network can generate an accurate result in 80 ms on a modern GPU. Compared to other 2D stereo networks (AANet, DeepPruner, FADNet, etc.), our network has a big improvement in accuracy. Meanwhile, it is significantly faster than other 3D stereo networks (5× than PSMNet, 7.5× than CSN and 22.5× than GANet, etc.), demonstrating the effectiveness of our method.

摘要

立体匹配是计算机视觉的一个重要研究领域。由于代价聚合的维度,当前基于神经网络的立体方法很难在速度和准确性之间进行权衡。为此,我们将快速的 2D 立体方法与准确的 3D 网络相结合,以提高性能并降低运行时间。我们利用 2D 编解码器网络生成粗略的视差图,并构建视差范围来指导 3D 聚合网络,这可以显著提高准确性并降低计算成本。我们使用堆叠沙漏结构从粗到细细化视差。我们在三个公共数据集上评估了我们的方法。根据 KITTI 官方网站的结果,我们的网络可以在现代 GPU 上 80ms 生成准确的结果。与其他 2D 立体网络(AANet、DeepPruner、FADNet 等)相比,我们的网络在准确性方面有了很大的提高。同时,它比其他 3D 立体网络(比 PSMNet 快 5 倍,比 CSN 快 7.5 倍,比 GANet 快 22.5 倍等)快得多,证明了我们方法的有效性。

相似文献

2
A stereo matching algorithm based on the improved PSMNet.基于改进的 PSMNet 的立体匹配算法。
PLoS One. 2021 Aug 19;16(8):e0251657. doi: 10.1371/journal.pone.0251657. eCollection 2021.
10
Learning Depth with Convolutional Spatial Propagation Network.基于卷积空间传播网络的深度学习
IEEE Trans Pattern Anal Mach Intell. 2020 Oct;42(10):2361-2379. doi: 10.1109/TPAMI.2019.2947374. Epub 2019 Oct 15.

本文引用的文献

1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验