Institut für Biologie, Bereich Pflanzenwissenschaften, Karl-Franzens Universität Graz, 8010 Graz, Austria.
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria Y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
Int J Mol Sci. 2021 Feb 18;22(4):2040. doi: 10.3390/ijms22042040.
The major auxin, indole-3-acetic acid (IAA), is associated with a plethora of growth and developmental processes including embryo development, expansion growth, cambial activity, and the induction of lateral root growth. Accumulation of the auxin precursor indole-3-acetamide (IAM) induces stress related processes by stimulating abscisic acid (ABA) biosynthesis. How IAM signaling is controlled is, at present, unclear. Here, we characterize the double mutant, that we initially generated to study the metabolic and phenotypic consequences of a simultaneous genetic blockade of the indole glucosinolate and IAM pathways in . Our mass spectrometric analyses of the mutant revealed that the combination of the two mutations is not sufficient to fully prevent the conversion of IAM to IAA. The detected strong accumulation of IAM was, however, recognized to substantially impair seed development. We further show by genome-wide expression studies that the double mutant is broadly affected in its translational capacity, and that a small number of plant growth regulating transcriptional circuits are repressed by the high IAM content in the seed. In accordance with the previously described growth reduction in response to elevated IAM levels, our data support the hypothesis that IAM is a growth repressing counterpart to IAA.
主要的生长素吲哚-3-乙酸(IAA)与众多生长和发育过程有关,包括胚胎发育、扩张生长、形成层活动和侧根生长的诱导。生长素前体吲哚-3-乙酰胺(IAM)的积累通过刺激脱落酸(ABA)的生物合成来诱导与应激相关的过程。目前,IAM 信号如何被控制尚不清楚。在这里,我们对双突变体进行了表征,我们最初生成该突变体是为了研究在 中同时遗传阻断吲哚葡糖苷和 IAM 途径的代谢和表型后果。我们对突变体的质谱分析表明,这两种突变的组合不足以完全阻止 IAM 向 IAA 的转化。然而,检测到的 IAM 的强烈积累被认为严重损害了种子发育。我们进一步通过全基因组表达研究表明,该双突变体在其翻译能力上受到广泛影响,并且由于种子中高 IAM 含量,少数植物生长调节转录电路受到抑制。与之前描述的对升高的 IAM 水平的生长减少相符合,我们的数据支持 IAM 是 IAA 的生长抑制对应物的假说。