Zanotti Simone, Minkov Momchil, Fan Shanhui, Andreani Lucio C, Gerace Dario
Dipartimento di Fisica, Università di Pavia, via Bassi 6, 27100 Pavia, Italy.
Ginzton Laboratory, and Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
Nanomaterials (Basel). 2021 Feb 28;11(3):605. doi: 10.3390/nano11030605.
Second-order nonlinear effects, such as second-harmonic generation, can be strongly enhanced in nanofabricated photonic materials when both fundamental and harmonic frequencies are spatially and temporally confined. Practically designing low-volume and doubly-resonant nanoresonators in conventional semiconductor compounds is challenging owing to their intrinsic refractive index dispersion. In this work we review a recently developed strategy to design doubly-resonant nanocavities with low mode volume and large quality factor via localized defects in a photonic crystal structure. We built on this approach by applying an evolutionary optimization algorithm in connection with Maxwell equations solvers; the proposed design recipe can be applied to any material platform. We explicitly calculated the second-harmonic generation efficiency for doubly-resonant photonic crystal cavity designs in typical III-V semiconductor materials, such as GaN and AlGaAs, while targeting a fundamental harmonic at telecom wavelengths and fully accounting for the tensor nature of the respective nonlinear susceptibilities. These results may stimulate the realization of small footprint photonic nanostructures in leading semiconductor material platforms to achieve unprecedented nonlinear efficiencies.
当基频和谐波频率在空间和时间上都受到限制时,诸如二次谐波产生等二阶非线性效应在纳米制造的光子材料中会得到显著增强。由于传统半导体化合物固有的折射率色散,在其中实际设计低体积和双共振纳米谐振器具有挑战性。在这项工作中,我们回顾了一种最近开发的策略,即通过光子晶体结构中的局部缺陷来设计具有低模式体积和高品质因数的双共振纳米腔。我们通过结合麦克斯韦方程组求解器应用进化优化算法来拓展这一方法;所提出的设计方法可应用于任何材料平台。我们明确计算了典型III-V族半导体材料(如GaN和AlGaAs)中双共振光子晶体腔设计的二次谐波产生效率,同时以电信波长的基频谐波为目标,并充分考虑了各自非线性极化率的张量性质。这些结果可能会推动在领先的半导体材料平台中实现小尺寸光子纳米结构,以获得前所未有的非线性效率。