Suppr超能文献

一种用于物联网的基于移动边缘计算的高效计算卸载策略。

An Efficient Computation Offloading Strategy with Mobile Edge Computing for IoT.

作者信息

Fang Juan, Shi Jiamei, Lu Shuaibing, Zhang Mengyuan, Ye Zhiyuan

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.

出版信息

Micromachines (Basel). 2021 Feb 17;12(2):204. doi: 10.3390/mi12020204.

Abstract

With the rapidly development of mobile cloud computing (MCC), the Internet of Things (IoT), and artificial intelligence (AI), user equipment (UEs) are facing explosive growth. In order to effectively solve the problem that UEs may face with insufficient capacity when dealing with computationally intensive and delay sensitive applications, we take Mobile Edge Computing (MEC) of the IoT as the starting point and study the computation offloading strategy of UEs. First, we model the application generated by UEs as a directed acyclic graph (DAG) to achieve fine-grained task offloading scheduling, which makes the parallel processing of tasks possible and speeds up the execution efficiency. Then, we propose a multi-population cooperative elite algorithm (MCE-GA) based on the standard genetic algorithm, which can solve the offloading problem for tasks with dependency in MEC to minimize the execution delay and energy consumption of applications. Experimental results show that MCE-GA has better performance compared to the baseline algorithms. To be specific, the overhead reduction by MCE-GA can be up to 72.4%, 38.6%, and 19.3%, respectively, which proves the effectiveness and reliability of MCE-GA.

摘要

随着移动云计算(MCC)、物联网(IoT)和人工智能(AI)的快速发展,用户设备(UE)数量正呈爆炸式增长。为有效解决UE在处理计算密集型和时延敏感型应用时可能面临的容量不足问题,我们以物联网的移动边缘计算(MEC)为出发点,研究UE的计算卸载策略。首先,我们将UE生成的应用建模为有向无环图(DAG),以实现细粒度任务卸载调度,这使得任务的并行处理成为可能,并提高了执行效率。然后,我们提出了一种基于标准遗传算法的多种群协作精英算法(MCE-GA),该算法能够解决MEC中具有依赖性的任务卸载问题,以最小化应用的执行延迟和能耗。实验结果表明,与基线算法相比,MCE-GA具有更好的性能。具体而言,MCE-GA的开销减少分别可达72.4%、38.6%和19.3%,这证明了MCE-GA的有效性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ea4/7923021/c4fb938eb859/micromachines-12-00204-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验