Nguyen VanDung, Khanh Tran Trong, Nguyen Tri D T, Hong Choong Seon, Huh Eui-Nam
Department of Computer Science and Engineering, Kyung Hee University, Korea, Deokyoungdaero, Yongin, Korea.
J Cloud Comput (Heidelb). 2020;9(1):66. doi: 10.1186/s13677-020-00211-9. Epub 2020 Nov 25.
In the Internet of Things (IoT) era, the capacity-limited Internet and uncontrollable service delays for various new applications, such as video streaming analysis and augmented reality, are challenges. Cloud computing systems, also known as a solution that offloads energy-consuming computation of IoT applications to a cloud server, cannot meet the delay-sensitive and context-aware service requirements. To address this issue, an edge computing system provides timely and context-aware services by bringing the computations and storage closer to the user. The dynamic flow of requests that can be efficiently processed is a significant challenge for edge and cloud computing systems. To improve the performance of IoT systems, the mobile edge orchestrator (MEO), which is an application placement controller, was designed by integrating end mobile devices with edge and cloud computing systems. In this paper, we propose a flexible computation offloading method in a fuzzy-based MEO for IoT applications in order to improve the efficiency in computational resource management. Considering the network, computation resources, and task requirements, a fuzzy-based MEO allows edge workload orchestration actions to decide whether to offload a mobile user to local edge, neighboring edge, or cloud servers. Additionally, increasing packet sizes will affect the failed-task ratio when the number of mobile devices increases. To reduce failed tasks because of transmission collisions and to improve service times for time-critical tasks, we define a new input crisp value, and a new output decision for a fuzzy-based MEO. Using the EdgeCloudSim simulator, we evaluate our proposal with four benchmark algorithms in augmented reality, healthcare, compute-intensive, and infotainment applications. Simulation results show that our proposal provides better results in terms of WLAN delay, service times, the number of failed tasks, and VM utilization.
在物联网(IoT)时代,容量有限的互联网以及诸如视频流分析和增强现实等各种新应用中无法控制的服务延迟都是挑战。云计算系统,也被视为一种将物联网应用中耗能的计算卸载到云服务器的解决方案,无法满足对延迟敏感且具有上下文感知能力的服务要求。为了解决这个问题,边缘计算系统通过将计算和存储更靠近用户来提供及时且具有上下文感知能力的服务。对于边缘和云计算系统而言,能够高效处理的请求动态流是一项重大挑战。为了提高物联网系统的性能,通过将终端移动设备与边缘和云计算系统集成,设计了作为应用放置控制器的移动边缘编排器(MEO)。在本文中,我们针对物联网应用在基于模糊的MEO中提出了一种灵活的计算卸载方法,以提高计算资源管理的效率。考虑到网络、计算资源和任务要求,基于模糊的MEO允许边缘工作负载编排操作决定是将移动用户卸载到本地边缘、相邻边缘还是云服务器。此外,当移动设备数量增加时,增大数据包大小会影响任务失败率。为了减少由于传输冲突导致的任务失败并提高对时间要求严格的任务的服务时间,我们为基于模糊的MEO定义了一个新的输入清晰值和一个新的输出决策。使用EdgeCloudSim模拟器,我们在增强现实、医疗保健、计算密集型和信息娱乐应用中用四种基准算法评估了我们的提议。仿真结果表明,我们的提议在无线局域网延迟、服务时间、任务失败数量和虚拟机利用率方面提供了更好的结果。