Department of Chemical Science and Technologies, University of Rome "Tor Vergata", 00133 Rome, Italy.
Department of Chemistry, La Sapienza University of Rome, 00185 Rome, Italy.
Sensors (Basel). 2021 Feb 17;21(4):1401. doi: 10.3390/s21041401.
The metalloporphyrin ligand bearing incorporated anion-exchanger fragment, 5-[4-(3-trimethylammonium)propyloxyphenyl]-10,15,20-triphenylporphyrinate of Co(II) chloride, CoTPP-N, has been tested as anion-selective ionophore in PVC-based solvent polymeric membrane sensors. A plausible sensor working mechanism includes the axial coordination of the target anion on ionophore metal center followed by the formed complex aggregation with the second ionophore molecule through positively charged anion-exchanger fragment. The UV-visible spectroscopic studies in solution have revealed that the analyte concentration increase induces the J-type porphyrin aggregation. Polymeric membranes doped with CoTPP-N showed close to the theoretical Nernstian response toward nitrite ion, preferably coordinated by the ionophore, and were dependent on the presence of additional membrane-active components (lipophilic ionic sites and ionophore) in the membrane phase. The resulting selectivity was a subject of specific interaction and/or steric factors. Moreover, it was demonstrated theoretically and confirmed experimentally that the selection of a proper ratio of ionophore and anionic additive can optimize the sensor selectivity and lifetime.
载有阴离子交换片段的金属卟啉配体,5-[4-(3-三甲基铵)丙氧基]苯基]-10,15,20-三苯基氯化钴(II)卟啉,CoTPP-N,已被测试为 PVC 基溶剂聚合物膜传感器中的阴离子选择性离子载体。一个合理的传感器工作机制包括目标阴离子在离子载体金属中心上的轴向配位,然后通过带正电荷的阴离子交换片段与第二个离子载体分子形成复合物聚集。溶液中的紫外可见光谱研究表明,分析物浓度的增加会诱导 J 型卟啉聚集。掺杂 CoTPP-N 的聚合物膜对亚硝酸根离子表现出接近理论 Nernst 响应,最好由离子载体配位,并且取决于膜相中的其他膜活性成分(亲脂性离子位点和离子载体)的存在。由此产生的选择性是特定相互作用和/或空间因素的主题。此外,从理论上和实验上证明,选择适当的离子载体和阴离子添加剂的比例可以优化传感器的选择性和寿命。