Doctorado en Biociencias, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, 68050 Oaxaca de Juárez, Mexico.
Escuela de Sistemas Biológicos e Innovación Tecnológica, Universidad Autónoma "Benito Juárez" de Oaxaca (SBIT-UABJO), Av. Universidad S/N, Ex-Hacienda 5 Señores, 68120 Oaxaca de Juárez, Mexico.
Biosensors (Basel). 2021 Feb 23;11(2):58. doi: 10.3390/bios11020058.
Vital signs not only reflect essential functions of the human body but also symptoms of a more serious problem within the anatomy; they are well used for physical monitoring, caloric expenditure, and performance before a possible symptom of a massive failure-a great variety of possibilities that together form a first line of basic diagnosis and follow-up on the health and general condition of a person. This review includes a brief theory about fiber optic sensors' operation and summarizes many research works carried out with them in which their operation and effectiveness are promoted to register some vital sign(s) as a possibility for their use in the medical, health care, and life support fields. The review presents methods and techniques to improve sensitivity in monitoring vital signs, such as the use of doping agents or coatings for optical fiber (OF) that provide stability and resistance to the external factors from which they must be protected in in vivo situations. It has been observed that most of these sensors work with single-mode optical fibers (SMF) in a spectral range of 1550 nm, while only some work in the visible spectrum (Vis); the vast majority, operate through fiber Bragg gratings (FBG), long-period fiber gratings (LPFG), and interferometers. These sensors have brought great advances to the measurement of vital signs, especially with regard to respiratory rate; however, many express the possibility of monitoring other vital signs through mathematical calculations, algorithms, or auxiliary devices. Their advantages due to miniaturization, immunity to electromagnetic interference, and the absence of a power source makes them truly desirable for everyday use at all times.
生命体征不仅反映了人体的基本功能,还反映了解剖结构内部更严重问题的症状;它们非常适用于身体监测、热量消耗和性能评估,以预防可能出现的重大故障症状——这是各种可能性的综合,共同构成了基本诊断和跟踪一个人健康和一般状况的第一线。本综述包括光纤传感器工作的简要理论,并总结了许多用它们进行的研究工作,这些研究工作促进了它们的运行和有效性,以记录一些生命体征,作为将其用于医疗、保健和生命支持领域的可能性。该综述介绍了提高监测生命体征的灵敏度的方法和技术,例如使用掺杂剂或光纤涂层(OF),这为其提供了稳定性和对其在体内环境中必须保护的外部因素的抵抗力。已经观察到,这些传感器中的大多数在 1550nm 的光谱范围内使用单模光纤(SMF)工作,而只有一些在可见光谱(Vis)中工作;绝大多数通过光纤布拉格光栅(FBG)、长周期光纤光栅(LPFG)和干涉仪来工作。这些传感器在生命体征的测量方面带来了巨大的进步,特别是在呼吸率方面;然而,许多人通过数学计算、算法或辅助设备表示有可能监测其他生命体征。由于其微型化、对电磁干扰的免疫力以及无需电源,这些传感器非常适合随时随地的日常使用。