Departament of Genetics, Microbiology and Statistics, Avda. Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain.
Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Universitat de Barcelona, 08028 Barcelona, Spain.
Int J Mol Sci. 2021 Feb 12;22(4):1855. doi: 10.3390/ijms22041855.
Alternative splicing of mRNA is an essential mechanism to regulate and increase the diversity of the transcriptome and proteome. Alternative splicing frequently occurs in a tissue- or time-specific manner, contributing to differential gene expression between cell types during development. Neural tissues present extremely complex splicing programs and display the highest number of alternative splicing events. As an extension of the central nervous system, the retina constitutes an excellent system to illustrate the high diversity of neural transcripts. The retina expresses retinal specific splicing factors and produces a large number of alternative transcripts, including exclusive tissue-specific exons, which require an exquisite regulation. In fact, a current challenge in the genetic diagnosis of inherited retinal diseases stems from the lack of information regarding alternative splicing of retinal genes, as a considerable percentage of mutations alter splicing or the relative production of alternative transcripts. Modulation of alternative splicing in the retina is also instrumental in the design of novel therapeutic approaches for retinal dystrophies, since it enables precision medicine for specific mutations.
mRNA 的可变剪接是调控和增加转录组和蛋白质组多样性的重要机制。可变剪接通常以组织或时间特异性的方式发生,有助于在发育过程中不同细胞类型之间的基因表达差异。神经组织呈现出极其复杂的剪接程序,并显示出最多的可变剪接事件。作为中枢神经系统的延伸,视网膜构成了说明神经转录物高度多样性的绝佳系统。视网膜表达视网膜特异性剪接因子,并产生大量的可变剪接转录本,包括独特的组织特异性外显子,这些外显子需要精细的调控。事实上,遗传性视网膜疾病的遗传诊断所面临的一个当前挑战源于对视网膜基因可变剪接信息的缺乏,因为相当一部分突变改变了剪接或可变转录本的相对产生。在视网膜中调节可变剪接对于设计针对视网膜营养不良的新型治疗方法也很重要,因为它为特定突变提供了精准医疗。