Suppr超能文献

拟南芥和乙烯信号突变体的多样盐胁迫反应与根系生长素稳态改变有关。

The Diverse Salt-Stress Response of Arabidopsis and Ethylene Signaling Mutants Is Linked to Altered Root Auxin Homeostasis.

作者信息

Vaseva Irina I, Mishev Kiril, Depaepe Thomas, Vassileva Valya, Van Der Straeten Dominique

机构信息

Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria.

Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000 Ghent, Belgium.

出版信息

Plants (Basel). 2021 Feb 27;10(3):452. doi: 10.3390/plants10030452.

Abstract

We explored the interplay between ethylene signals and the auxin pool in roots exposed to high salinity using wild-type plants (Col-0), and the ethylene-signaling mutants (constitutive) and (insensitive). The negative effect of salt stress was less pronounced in individuals, which was concomitant with augmented auxin signaling both in the controls and after 100 mM NaCl treatment. The R2D2 auxin sensorallowed mapping this active auxin increase to the root epidermal cells in the late Cell Division (CDZ) and Transition Zone (TZ). In contrast, the ethylene-insensitive plants appeared depleted in active auxins. The involvement of ethylene/auxin crosstalk in the salt stress response was evaluated by introducing auxin reporters for local biosynthesis () and polar transport (, , , , ) in the mutants. The constantly operating ethylene-signaling pathway in was linked to increased auxin biosynthesis. This was accompanied by a steady expression of the auxin transporters evaluated by qRT-PCR and crosses with the auxin transport reporters. The results imply that the ability of mutant to tolerate high salinity could be related to the altered ethylene/auxin regulatory loop manifested by a stabilized local auxin biosynthesis and transport.

摘要

我们使用野生型植物(Col-0)以及乙烯信号突变体(组成型)和(不敏感型),探究了暴露于高盐环境下的根中乙烯信号与生长素库之间的相互作用。盐胁迫对突变体植株的负面影响不那么明显,这与对照以及100 mM NaCl处理后的生长素信号增强相伴。R2D2生长素传感器能够将这种活性生长素的增加定位到细胞分裂后期(CDZ)和过渡区(TZ)的根表皮细胞。相比之下,乙烯不敏感型植株的活性生长素似乎减少。通过在突变体中引入用于局部生物合成()和极性运输(、、、、)的生长素报告基因,评估了乙烯/生长素相互作用在盐胁迫响应中的作用。突变体中持续运行的乙烯信号通路与生长素生物合成增加有关。这伴随着通过qRT-PCR评估的生长素转运蛋白的稳定表达以及与生长素运输报告基因的杂交。结果表明,突变体耐受高盐的能力可能与由稳定的局部生长素生物合成和运输所表现出的乙烯/生长素调节环改变有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc11/7997360/a1a0b91a33b0/plants-10-00452-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验