Shi Shan, Li Yong, Ngo-Dinh Bao-Nam, Markmann Jürgen, Weissmüller Jörg
Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany.
Institute of Materials Physics and Technology, Hamburg University of Technology, 21073 Hamburg, Germany.
Science. 2021 Mar 5;371(6533):1026-1033. doi: 10.1126/science.abd9391.
Structural hierarchy can enhance the mechanical behavior of materials and systems. This is exemplified by the fracture toughness of nacre or enamel in nature and by human-made architected microscale network structures. Nanoscale structuring promises further strengthening, yet macroscopic bodies built this way contain an immense number of struts, calling for scalable preparation schemes. In this work, we demonstrated macroscopic hierarchical network nanomaterials made by the self-organization processes of dealloying. Their hierarchical architecture affords enhanced strength and stiffness at a given solid fraction, and it enables reduced solid fractions by dealloying. Scaling laws for the mechanics and atomistic simulation support the observations. Because they expose the systematic benefits of hierarchical structuring in nanoscale network structures, our materials may serve as prototypes for future lightweight structural materials.
结构层次可以增强材料和系统的力学性能。自然界中珍珠母或牙釉质的断裂韧性以及人造的微观尺度网络结构都例证了这一点。纳米尺度的结构化有望进一步增强性能,然而以这种方式构建的宏观物体包含大量支柱,这就需要可扩展的制备方案。在这项工作中,我们展示了通过脱合金自组织过程制备的宏观层次网络纳米材料。它们的层次结构在给定的固体分数下提供了更高的强度和刚度,并且通过脱合金能够降低固体分数。力学和原子模拟的标度律支持了这些观察结果。由于我们的材料揭示了纳米尺度网络结构中层次结构化的系统性优势,它们可作为未来轻质结构材料的原型。