Suppr超能文献

结构层次赋予生物材料容错性。

Structural hierarchy confers error tolerance in biological materials.

机构信息

School of Physics, Georgia Institute of Technology, Atlanta GA 30332.

School of Physics, Georgia Institute of Technology, Atlanta GA 30332

出版信息

Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2875-2880. doi: 10.1073/pnas.1813801116. Epub 2019 Feb 5.

Abstract

Structural hierarchy, in which materials possess distinct features on multiple length scales, is ubiquitous in nature. Diverse biological materials, such as bone, cellulose, and muscle, have as many as 10 hierarchical levels. Structural hierarchy confers many mechanical advantages, including improved toughness and economy of material. However, it also presents a problem: Each hierarchical level adds a new source of assembly errors and substantially increases the information required for proper assembly. This seems to conflict with the prevalence of naturally occurring hierarchical structures, suggesting that a common mechanical source of hierarchical robustness may exist. However, our ability to identify such a unifying phenomenon is limited by the lack of a general mechanical framework for structures exhibiting organization on disparate length scales. Here, we use simulations to substantiate a generalized model for the tensile stiffness of hierarchical filamentous networks with a nested, dilute triangular lattice structure. Following seminal work by Maxwell and others on criteria for stiff frames, we extend the concept of connectivity in network mechanics and find a similar dependence of material stiffness upon each hierarchical level. Using this model, we find that stiffness becomes less sensitive to errors in assembly with additional levels of hierarchy; although surprising, we show that this result is analytically predictable from first principles and thus potentially model independent. More broadly, this work helps account for the success of hierarchical, filamentous materials in biology and materials design and offers a heuristic for ensuring that desired material properties are achieved within the required tolerance.

摘要

结构层次,即材料在多个长度尺度上具有不同的特征,在自然界中无处不在。多种多样的生物材料,如骨骼、纤维素和肌肉,具有多达 10 个层次结构。结构层次赋予了许多机械优势,包括提高韧性和材料经济性。然而,它也带来了一个问题:每个层次结构都增加了新的装配误差源,并大大增加了正确装配所需的信息量。这似乎与自然发生的层次结构的普遍性相矛盾,表明可能存在一种共同的机械层次鲁棒性来源。然而,我们识别这种统一现象的能力受到缺乏用于具有不同尺度组织的结构的通用机械框架的限制。在这里,我们使用模拟来证实具有嵌套、稀疏三角形晶格结构的分层丝状网络的拉伸刚度的广义模型。继 Maxwell 等人关于硬框架标准的开创性工作之后,我们扩展了网络力学中的连通性概念,并发现材料刚度与每个层次结构都有类似的依赖性。使用这个模型,我们发现随着层次结构的增加,组装误差对刚度的影响会降低;虽然令人惊讶,但我们表明这个结果可以从第一性原理预测,因此可能是独立于模型的。更广泛地说,这项工作有助于解释分层丝状材料在生物学和材料设计中的成功,并为确保在所需公差内实现所需的材料性能提供了一种启发式方法。

相似文献

1
Structural hierarchy confers error tolerance in biological materials.结构层次赋予生物材料容错性。
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2875-2880. doi: 10.1073/pnas.1813801116. Epub 2019 Feb 5.
2
Resilient 3D hierarchical architected metamaterials.弹性三维分层结构超材料
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11502-7. doi: 10.1073/pnas.1509120112. Epub 2015 Sep 1.
4
The emergence of an unusual stiffness profile in hierarchical biological tissues.分层生物组织中出现异常僵硬特性。
Acta Biomater. 2013 Sep;9(9):8099-109. doi: 10.1016/j.actbio.2013.04.052. Epub 2013 May 10.
5
Whole bone mechanics and mechanical testing.全骨力学与力学测试。
Vet J. 2008 Jul;177(1):8-17. doi: 10.1016/j.tvjl.2007.09.012. Epub 2007 Nov 5.
10

本文引用的文献

1
Multi-step self-guided pathways for shape-changing metamaterials.多步骤自导形变法向超材料路径。
Nature. 2018 Sep;561(7724):512-515. doi: 10.1038/s41586-018-0541-0. Epub 2018 Sep 26.
4
Designing allostery-inspired response in mechanical networks.在机械网络中设计受变构启发的响应。
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2520-2525. doi: 10.1073/pnas.1612139114. Epub 2017 Feb 21.
5
Nonlinear elasticity of disordered fiber networks.无序纤维网络的非线性弹性
Soft Matter. 2016 Feb 7;12(5):1419-24. doi: 10.1039/c5sm01856k. Epub 2015 Nov 30.
6
Stress controls the mechanics of collagen networks.应力控制着胶原蛋白网络的力学特性。
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9573-8. doi: 10.1073/pnas.1504258112. Epub 2015 Jul 20.
7
Phonons and elasticity in critically coordinated lattices.声子与临界协调晶格中的弹性。
Rep Prog Phys. 2015 Jul;78(7):073901. doi: 10.1088/0034-4885/78/7/073901. Epub 2015 Jun 26.
8
Mechanics of anisotropic spring networks.各向异性弹簧网络的力学原理。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062139. doi: 10.1103/PhysRevE.90.062139. Epub 2014 Dec 29.
9
Size limits of self-assembled colloidal structures made using specific interactions.使用特定相互作用自组装胶体结构的尺寸限制。
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15918-23. doi: 10.1073/pnas.1411765111. Epub 2014 Oct 27.
10
Bioinspired structural materials.仿生结构材料。
Nat Mater. 2015 Jan;14(1):23-36. doi: 10.1038/nmat4089. Epub 2014 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验