Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
Department of Public Health, Aarhus University, Aarhus, Denmark.
Exp Physiol. 2021 May;106(5):1272-1284. doi: 10.1113/EP089317. Epub 2021 Mar 26.
What is the central question of this study? Glycogen supercompensation after glycogen-depleting exercise can be achieved by consuming a carbohydrate-enriched diet, but the associated effects on the size, number and localization of intramuscular glycogen particles are unknown. What is the main finding and its importance? Using transmission electron microscopy to inspect individual glycogen particles visually, we show that glycogen supercompensation is achieved by increasing the number of particles while keeping them at submaximal sizes. This might be a strategy to ensure that glycogen particles can be used fast, because particles that are too large might impair utilization rate.
Glycogen supercompensation after glycogen-depleting exercise can be achieved by consuming a carbohydrate-enriched diet, but the associated effects on the size, number and localization of intramuscular glycogen particles are unknown. We investigated how a glycogen-loading protocol affects fibre type-specific glycogen volume density, particle diameter and numerical density in three subcellular pools: between (intermyofibrillar) or within (intramyofibrillar) the myofibrils or beneath the sarcolemma (subsarcolemmal). Resting muscle biopsies from 11 physically active men were analysed using transmission electron microscopy after mixed (MIX), LOW or HIGH carbohydrate consumption separated by glycogen-lowering cycling at 75% of maximal oxygen consumption until exhaustion. After HIGH, the total volumetric glycogen content was 40% [95% confidence interval 16, 68] higher than after MIX in type I fibres (P < 0.001), with little to no difference in type II fibres (9% [95% confidence interval -9, 27]). Median particle diameter was 22.5 (interquartile range 20.8-24.7) nm across glycogen pools and fibre types, and the numerical density was 61% [25, 107] and 40% [9, 80] higher in the subsarcolemmal (P < 0.001) and intermyofibrillar (P < 0.01) pools of type I fibres, respectively, with little to no difference in the intramyofibrillar pool (3% [-20, 32]). In LOW, total glycogen was in the range of 21-23% lower, relative to MIX, in both fibre types, reflected in a 21-46% lower numerical density across pools. In comparison to MIX, particle diameter was unaffected by other diets ([-1.4, 1.3] nm). In conclusion, glycogen supercompensation after prolonged cycling is exclusive to type I fibres, predominantly in the subsarcolemmal pool, and involves an increase in the numerical density rather than the size of existing glycogen particles.
这项研究的核心问题是什么?通过摄入富含碳水化合物的饮食可以实现糖原耗竭运动后的糖原超补偿,但对肌内糖原颗粒的大小、数量和定位的相关影响尚不清楚。主要发现及其重要性是什么?通过使用透射电子显微镜对单个糖原颗粒进行直观观察,我们表明糖原超补偿是通过增加颗粒数量而保持颗粒处于亚最大尺寸来实现的。这可能是一种确保糖原颗粒能够快速使用的策略,因为过大的颗粒可能会降低利用率。
通过摄入富含碳水化合物的饮食可以实现糖原耗竭运动后的糖原超补偿,但对肌内糖原颗粒的大小、数量和定位的相关影响尚不清楚。我们研究了糖原负荷方案如何影响三种亚细胞池中的纤维类型特异性糖原体积密度、颗粒直径和数值密度:在肌原纤维之间(肌间)或肌原纤维内(肌内)或在肌膜下(肌下)。在以 75%最大摄氧量进行耗竭性自行车运动使糖原降低后,11 名身体活跃的男性分别接受混合(MIX)、低(LOW)或高(HIGH)碳水化合物饮食,休息时的肌肉活检使用透射电子显微镜进行分析。与 MIX 相比,HIGH 后 I 型纤维的总容积糖原含量高 40%[95%置信区间 16,68](P < 0.001),而 II 型纤维差异较小(9%[-9,27])。糖原池和纤维类型的颗粒直径中位数为 22.5[20.8-24.7]nm,I 型纤维的肌下和肌间糖原池的数值密度分别高 61%[25,107]和 40%[9,80](P < 0.001),而肌内糖原池差异较小(3%[-20,32])。在 LOW 中,与 MIX 相比,两种纤维类型的糖原总含量分别低 21-23%,反映出各池的数值密度低 21-46%。与 MIX 相比,其他饮食对颗粒直径没有影响([-1.4,1.3]nm)。总之,长时间骑自行车后糖原的超补偿是 I 型纤维特有的,主要发生在肌下池,涉及到现有糖原颗粒数量密度的增加而不是颗粒大小的增加。