Suppr超能文献

不同算法在α1-抗胰蛋白酶缺乏症实验室诊断中的比较。

Comparison of different algorithms in laboratory diagnosis of alpha1-antitrypsin deficiency.

机构信息

Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Laboratory of Biochemistry and Genetics, Institute for Respiratory Disease, Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.

Conresp, Loerzweiler, Germany.

出版信息

Clin Chem Lab Med. 2021 Mar 5;59(8):1384-1391. doi: 10.1515/cclm-2020-1881. Print 2021 Jul 27.

Abstract

OBJECTIVES

Alpha1-antitrypsin deficiency (AATD) is an inherited condition that predisposes individuals to an increased risk of developing lung and liver disease. Even though AATD is one of the most widespread inherited diseases in Caucasian populations, only a minority of affected individuals has been detected. Whereas methods have been validated for AATD testing, there is no universally-established algorithm for the detection and diagnosis of the disorder. In order to compare different methods for diagnosing AATD, we carried out a systematic review of the literature on AATD diagnostic algorithms.

METHODS

Complete biochemical and molecular analyses of 5,352 samples processed in our laboratory were retrospectively studied using each of the selected algorithms.

RESULTS

When applying the diagnostic algorithms to the same samples, the frequency of False Negatives varied from 1.94 to 12.9%, the frequency of True Negatives was 62.91% for each algorithm and the frequency of True Positives ranged from 24.19 to 35.15%. We, therefore, highlighted some differences among Negative Predictive Values, ranging from 0.83 to 0.97. Accordingly, the sensitivity of each algorithm ranged between 0.61 and 0.95. We also postulated 1.108 g/L as optimal AAT cut-off value, in absence of inflammatory status, which points to the possible presence of genetic AATD.

CONCLUSIONS

The choice of the diagnostic algorithm has a significant impact on the correct diagnosis of AATD, which is essential for appropriate treatment and medical care. The fairly large number of possible false negative diagnoses revealed by the present paper should also warn clinicians of negative results in patients with clinically-suspected AATD.

摘要

目的

α1-抗胰蛋白酶缺乏症(AATD)是一种遗传性疾病,使个体易患肺部和肝脏疾病。尽管 AATD 是白种人群体中最广泛的遗传疾病之一,但只有少数受影响的个体被发现。虽然已经验证了用于 AATD 检测的方法,但尚未建立用于检测和诊断该疾病的普遍确立的算法。为了比较用于诊断 AATD 的不同方法,我们对 AATD 诊断算法的文献进行了系统评价。

方法

使用每种选定的算法对在我们实验室中处理的 5352 个样本的完整生化和分子分析进行了回顾性研究。

结果

当将诊断算法应用于相同的样本时,假阴性的频率从 1.94%到 12.9%不等,每种算法的真阴性频率为 62.91%,真阳性频率从 24.19%到 35.15%不等。因此,我们强调了阴性预测值之间的一些差异,范围从 0.83 到 0.97。因此,每种算法的灵敏度在 0.61 到 0.95 之间。我们还假设在没有炎症状态的情况下,1.108 g/L 是最佳 AAT 截止值,这表明可能存在遗传 AATD。

结论

诊断算法的选择对 AATD 的正确诊断有重大影响,这对于适当的治疗和医疗保健至关重要。本研究揭示的大量可能的假阴性诊断也应警告临床医生注意临床怀疑患有 AATD 的患者的阴性结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验