Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
Biochem Biophys Res Commun. 2021 Apr 23;550:1-7. doi: 10.1016/j.bbrc.2021.02.073. Epub 2021 Mar 3.
Studying thermal stability of proteins not only provides insight into protein structure but also is instrumental in identifying previously unknown interaction partners. We develop a machine learning strategy that combines orthogonal partial least squares regression and stability screening of Silver Bullets Bio library to identify biologically active molecules that enhance protein stability. This strategy proves effective in extracting the stability-enhancing molecules for SMYD5, a histone lysine methyltransferase that regulates chromosome integrity. Protamine, a histone substitute in chromatin condensation during spermatogenesis, is identified as the most influential molecule to enhance SMYD5 thermal stability. We find that the C-terminal poly-glutamic acid tract (poly-E) and a 30-residue insertion in MYND domain (M-insertion), which are unique to SMYD5, regulate the structural stability. However, protamine plays a dominant role in SMYD5 stability, and in the presence of protamine, the poly-E tract or M-insertion loses its ability to affect the stability. The stability-enhancing effect of protamine is SMYD5 specific, and for SMYD2, a closely related homolog, protamine exhibits opposite, destabilizing effects. We find that both SMYD5 and SMYD2 interact with protamine, where SMYD5 interaction is independent of the poly-E tract and M-insertion. Protamine not only helps provide insight into the structure-stability relationships of SMYD5, but also suggests a potential functional link of SMYD5 to spermatogenesis. SMYD5 is a ubiquitously expressed gene with the highest expression in testis, especially in the seminiferous ducts that contain germ cells. Thus, our study opens up avenues that could help delineate major mechanisms underlying chromatin dynamics during spermatogenesis.
研究蛋白质的热稳定性不仅可以深入了解蛋白质结构,还有助于识别以前未知的相互作用伙伴。我们开发了一种机器学习策略,该策略结合了正交偏最小二乘回归和 Silver Bullets Bio 文库的稳定性筛选,以鉴定可增强蛋白质稳定性的生物活性分子。该策略在提取 SMYD5 的稳定性增强分子方面非常有效,SMYD5 是一种组蛋白赖氨酸甲基转移酶,可调节染色体完整性。鱼精蛋白是精子发生过程中染色质浓缩的组蛋白替代物,被鉴定为增强 SMYD5 热稳定性的最具影响力的分子。我们发现,SMYD5 特有的 C 末端多谷氨酸(poly-E)和 MYND 结构域中的 30 残基插入(M-插入)调节结构稳定性。然而,鱼精蛋白在 SMYD5 稳定性中起主导作用,并且在存在鱼精蛋白的情况下,poly-E 结构域或 M-插入失去了影响稳定性的能力。鱼精蛋白的稳定性增强作用是 SMYD5 特异性的,对于紧密相关的同源物 SMYD2,鱼精蛋白表现出相反的,不稳定作用。我们发现 SMYD5 和 SMYD2 都与鱼精蛋白相互作用,其中 SMYD5 的相互作用不依赖于 poly-E 结构域和 M-插入。鱼精蛋白不仅有助于深入了解 SMYD5 的结构-稳定性关系,还暗示了 SMYD5 与精子发生之间的潜在功能联系。SMYD5 是一种广泛表达的基因,在睾丸中表达最高,特别是在含有生殖细胞的精曲小管中。因此,我们的研究为阐明精子发生过程中染色质动力学的主要机制开辟了途径。