Institut du Fer à Moulin, 75005, Paris, France; Inserm, UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France.
Department of Genetics, University of Cambridge, UK.
Curr Opin Neurobiol. 2021 Feb;66:240-249. doi: 10.1016/j.conb.2020.12.002. Epub 2021 Mar 5.
The connectivity patterns of neurons sustaining the functionality of spinal locomotor circuits rely on the specification of hundreds of motor neuron and interneuron subtypes precisely arrayed within the embryonic spinal cord. Knowledge acquired by developmental biologists on the molecular mechanisms underpinning this process in vivo has supported the development of 2D and 3D differentiation strategies to generate spinal neuronal diversity from mouse and human pluripotent stem cells (PSCs). Here, we review recent breakthroughs in this field and the perspectives opened up by models of in vitro embryogenesis to approach the mechanisms underlying neuronal diversification and the formation of functional mouse and human locomotor circuits. Beyond serving fundamental investigations, these new approaches should help engineering neuronal circuits differentially impacted in neuromuscular disorders, such as amyotrophic lateral sclerosis or spinal muscular atrophies, and thus open new avenues for disease modeling and drug screenings.
维持脊髓运动回路功能的神经元的连接模式依赖于数百种运动神经元和中间神经元亚型的精确排列,这些亚型精确排列在胚胎脊髓内。发育生物学家在体内这一过程的分子机制方面所获得的知识,支持了从小鼠和人多能干细胞(PSCs)生成脊髓神经元多样性的 2D 和 3D 分化策略的发展。在这里,我们综述了该领域的最新突破,以及体外胚胎发生模型所带来的新视角,以探讨神经元多样化和功能型小鼠和人运动回路形成的机制。除了进行基础研究外,这些新方法还应该有助于工程化受神经肌肉疾病影响的神经元回路,例如肌萎缩侧索硬化症或脊髓性肌萎缩症,从而为疾病建模和药物筛选开辟新途径。