Briones Oscar, Alarcón Rubén, Rojas Alejandro J, Sbarbaro Daniel
Department of Electrical Engineering, Universidad de Concepción, Concepción, Chile.
ISA Trans. 2022 Jan;119:184-195. doi: 10.1016/j.isatra.2021.02.040. Epub 2021 Mar 1.
Predictive PI (PPI) controllers have demonstrated to exceed traditional PID controllers when they are applied to systems with long delays. This work proposes a new controller structure and tuning that we call Generalized Predictive PI (GPPI) controller which provides greater design flexibility than PI and PPI strategies. To realize a fair comparison, the design and tuning rules for discrete PI and PPI controllers were developed using optimal arguments based on the root-locus, for critically damped response before a step change in the reference. Experimental results, using industrial equipment, have illustrated the tuning methodology and the performance of the proposed controller under real conditions. Flow and water level process in a laboratory flume were considered. For these processes, First Order Plus Time Delay (FOPTD) models are used. The GPPI control results are encouraging, reducing the settling time plus a very small overshoot before step change in the reference regarding the PI and PPI strategies, up to 41.03% for the flow control loop and up to 54.21% for the level control loop. The discrete analysis of the strategies in the Z plane was performed, allowing for a direct translation to recursive equations that can then be programmed into a Programmable Logic Controller (PLC), other industrial controllers such as Distributed Control Systems (DSC), or microcontrollers, such as Arduino, Raspberry or FPGA. This is an important result, since it demonstrates that the increased complexity of the proposed controller does not hamper its implementation in industrial controller systems. In this work, we used a Rockwell ControlLogix PLC with Structured Text programming language.
预测性比例积分(PPI)控制器在应用于具有长延迟的系统时,已证明其性能优于传统的比例积分微分(PID)控制器。这项工作提出了一种新的控制器结构和整定方法,我们称之为广义预测性比例积分(GPPI)控制器,它比比例积分(PI)和预测性比例积分(PPI)策略具有更大的设计灵活性。为了进行公平比较,基于根轨迹的最优参数,针对参考值阶跃变化前的临界阻尼响应,开发了离散PI和PPI控制器的设计和整定规则。使用工业设备的实验结果说明了所提出控制器在实际条件下的整定方法和性能。考虑了实验室水槽中的流量和水位过程。对于这些过程,使用了一阶加时滞(FOPTD)模型。GPPI控制结果令人鼓舞,与PI和PPI策略相比,在参考值阶跃变化前,减少了调节时间以及非常小的超调量,流量控制回路最多减少41.03%,水位控制回路最多减少54.21%。在Z平面上对这些策略进行了离散分析,从而可以直接转化为递归方程,然后可以编程到可编程逻辑控制器(PLC)、其他工业控制器(如分布式控制系统(DSC))或微控制器(如Arduino、Raspberry或现场可编程门阵列(FPGA))中。这是一个重要的结果,因为它表明所提出控制器增加的复杂性并不妨碍其在工业控制器系统中的实现。在这项工作中,我们使用了带有结构化文本编程语言的罗克韦尔ControlLogix PLC。