Suppr超能文献

基于时间接触数据的疫情检测

Outbreak detection for temporal contact data.

作者信息

Sterchi Martin, Sarasua Cristina, Grütter Rolf, Bernstein Abraham

机构信息

Department of Informatics, University of Zurich, Binzmühlestrasse 14, 8050 Zurich, Switzerland.

Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.

出版信息

Appl Netw Sci. 2021;6(1):17. doi: 10.1007/s41109-021-00360-z. Epub 2021 Feb 19.

Abstract

Epidemic spreading is a widely studied process due to its importance and possibly grave consequences for society. While the classical context of epidemic spreading refers to pathogens transmitted among humans or animals, it is straightforward to apply similar ideas to the spread of information (e.g., a rumor) or the spread of computer viruses. This paper addresses the question of how to optimally select nodes for monitoring in a network of timestamped contact events between individuals. We consider three optimization objectives: the detection likelihood, the time until detection, and the population that is affected by an outbreak. The optimization approach we use is based on a simple greedy approach and has been proposed in a seminal paper focusing on information spreading and water contamination. We extend this work to the setting of disease spreading and present its application with two example networks: a timestamped network of sexual contacts and a network of animal transports between farms. We apply the optimization procedure to a large set of outbreak scenarios that we generate with a model. We find that simple heuristic methods that select nodes with high degree or many contacts compare well in terms of outbreak detection performance with the (greedily) optimal set of nodes. Furthermore, we observe that nodes optimized on past periods may not be optimal for outbreak detection in future periods. However, seasonal effects may help in determining which past period generalizes well to some future period. Finally, we demonstrate that the detection performance depends on the simulation settings. In general, if we force the simulator to generate larger outbreaks, the detection performance will improve, as larger outbreaks tend to occur in the more connected part of the network where the top monitoring nodes are typically located. A natural progression of this work is to analyze how a representative set of outbreak scenarios can be generated, possibly taking into account more realistic propagation models.

摘要

由于疫情传播对社会的重要性以及可能产生的严重后果,它是一个被广泛研究的过程。虽然疫情传播的经典背景是指病原体在人类或动物之间传播,但将类似的概念应用于信息传播(如谣言)或计算机病毒传播是很直接的。本文探讨了如何在个体之间带时间戳的接触事件网络中最优地选择监测节点的问题。我们考虑三个优化目标:检测可能性、检测所需时间以及受疫情影响的人群。我们使用的优化方法基于一种简单的贪心方法,该方法已在一篇专注于信息传播和水污染的开创性论文中提出。我们将这项工作扩展到疾病传播的场景,并通过两个示例网络展示其应用:一个带时间戳的性接触网络和一个农场之间动物运输网络。我们将优化程序应用于通过一个模型生成的大量疫情爆发场景。我们发现,选择度数高或接触多的节点的简单启发式方法在疫情爆发检测性能方面与(贪心)最优节点集相当。此外,我们观察到在过去时间段优化的节点在未来时间段的疫情爆发检测中可能不是最优的。然而,季节性效应可能有助于确定哪些过去时间段能很好地推广到某些未来时间段。最后,我们证明检测性能取决于模拟设置。一般来说,如果我们强制模拟器生成更大规模的疫情爆发,检测性能将会提高,因为更大规模的疫情爆发往往发生在网络中连接更紧密的部分,而顶级监测节点通常位于该区域。这项工作的一个自然进展是分析如何生成一组具有代表性的疫情爆发场景,可能需要考虑更现实的传播模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb73/7895791/f15f235d02ac/41109_2021_360_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验