Valdano Eugenio, Poletto Chiara, Giovannini Armando, Palma Diana, Savini Lara, Colizza Vittoria
INSERM, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F-75013 56 bd Vincent Auriol-CS 81393-75646 Paris Cedex 13, France; Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F-75013 56 bd Vincent Auriol-CS 81393 - 75646 Paris Cedex 13, France.
Istituto Zooprofilattico Sperimentale Abruzzo-Molise G. Caporale Campo Boario, 64100 Teramo, Italy.
PLoS Comput Biol. 2015 Mar 12;11(3):e1004152. doi: 10.1371/journal.pcbi.1004152. eCollection 2015 Mar.
Understanding how epidemics spread in a system is a crucial step to prevent and control outbreaks, with broad implications on the system's functioning, health, and associated costs. This can be achieved by identifying the elements at higher risk of infection and implementing targeted surveillance and control measures. One important ingredient to consider is the pattern of disease-transmission contacts among the elements, however lack of data or delays in providing updated records may hinder its use, especially for time-varying patterns. Here we explore to what extent it is possible to use past temporal data of a system's pattern of contacts to predict the risk of infection of its elements during an emerging outbreak, in absence of updated data. We focus on two real-world temporal systems; a livestock displacements trade network among animal holdings, and a network of sexual encounters in high-end prostitution. We define the node's loyalty as a local measure of its tendency to maintain contacts with the same elements over time, and uncover important non-trivial correlations with the node's epidemic risk. We show that a risk assessment analysis incorporating this knowledge and based on past structural and temporal pattern properties provides accurate predictions for both systems. Its generalizability is tested by introducing a theoretical model for generating synthetic temporal networks. High accuracy of our predictions is recovered across different settings, while the amount of possible predictions is system-specific. The proposed method can provide crucial information for the setup of targeted intervention strategies.
了解流行病在一个系统中如何传播是预防和控制疫情爆发的关键一步,对系统的运行、健康及相关成本有着广泛影响。这可以通过识别感染风险较高的元素并实施有针对性的监测和控制措施来实现。需要考虑的一个重要因素是元素之间疾病传播接触的模式,然而数据的缺乏或更新记录的延迟可能会阻碍其应用,特别是对于随时间变化的模式。在此,我们探讨在没有更新数据的情况下,利用系统接触模式的过去时间数据来预测新出现疫情期间其元素感染风险的可能性。我们聚焦于两个现实世界的时间系统:动物养殖场之间的牲畜转移贸易网络,以及高端卖淫中的性接触网络。我们将节点的忠诚度定义为其随时间与相同元素保持接触倾向的一种局部度量,并揭示与节点疫情风险的重要非平凡相关性。我们表明,结合这些知识并基于过去的结构和时间模式属性进行的风险评估分析,能为这两个系统提供准确的预测。通过引入一个生成合成时间网络的理论模型来测试其通用性。在不同设置下,我们的预测都能恢复较高的准确性,而可能的预测数量则因系统而异。所提出的方法可为制定有针对性的干预策略提供关键信息。