Suppr超能文献

评估深度学习网络超声成束的输入域和模型选择。

Evaluating Input Domain and Model Selection for Deep Network Ultrasound Beamforming.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2370-2385. doi: 10.1109/TUFFC.2021.3064303. Epub 2021 Jun 29.

Abstract

Improving ultrasound B-mode image quality remains an important area of research. Recently, there has been increased interest in using deep neural networks (DNNs) to perform beamforming to improve image quality more efficiently. Several approaches have been proposed that use different representations of channel data for network processing, including a frequency-domain approach that we previously developed. We previously assumed that the frequency domain would be more robust to varying pulse shapes. However, frequency- and time-domain implementations have not been directly compared. In addition, because our approach operates on aperture domain data as an intermediate beamforming step, a discrepancy often exists between network performance and image quality on fully reconstructed images, making model selection challenging. Here, we perform a systematic comparison of frequency- and time-domain implementations. In addition, we propose a contrast-to-noise ratio (CNR)-based regularization to address previous challenges with model selection. Training channel data were generated from simulated anechoic cysts. Test channel data were generated from simulated anechoic cysts with and without varied pulse shapes, in addition to physical phantom and in vivo data. We demonstrate that simplified time-domain implementations are more robust than we previously assumed, especially when using phase preserving data representations. Specifically, 0.39- and 0.36-dB median improvements in in vivo CNR compared to DAS were achieved with frequency- and time-domain implementations, respectively. We also demonstrate that CNR regularization improves the correlation between training validation loss and simulated CNR by 0.83 and between simulated and in vivo CNR by 0.35 compared to DNNs trained without CNR regularization.

摘要

提高超声 B 模式图像质量仍然是一个重要的研究领域。最近,人们对使用深度神经网络(DNN)进行波束形成以更有效地提高图像质量越来越感兴趣。已经提出了几种方法,这些方法使用不同的通道数据表示形式进行网络处理,包括我们之前开发的频域方法。我们之前假设频域对变化的脉冲形状更稳健。然而,频域和时域实现并未直接进行比较。此外,由于我们的方法作为中间波束形成步骤在孔径域数据上运行,因此网络性能和完全重建图像上的图像质量之间经常存在差异,这使得模型选择具有挑战性。在这里,我们对频域和时域实现进行了系统比较。此外,我们提出了一种基于对比度噪声比(CNR)的正则化方法来解决以前模型选择的挑战。训练通道数据是从模拟无回声囊肿生成的。测试通道数据是从模拟无回声囊肿(具有和不具有变化的脉冲形状)以及物理体模和体内数据生成的。我们证明简化的时域实现比我们之前假设的更稳健,尤其是在使用相位保持数据表示形式时。具体来说,与 DAS 相比,体内 CNR 的中值分别提高了 0.39 和 0.36 dB。我们还证明,与未进行 CNR 正则化的 DNN 相比,CNR 正则化将训练验证损失与模拟 CNR 之间的相关性提高了 0.83,将模拟 CNR 与体内 CNR 之间的相关性提高了 0.35。

相似文献

1
Evaluating Input Domain and Model Selection for Deep Network Ultrasound Beamforming.评估深度学习网络超声成束的输入域和模型选择。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2370-2385. doi: 10.1109/TUFFC.2021.3064303. Epub 2021 Jun 29.
2
Deep Neural Networks for Ultrasound Beamforming.深度学习在超声束形成中的应用。
IEEE Trans Med Imaging. 2018 Sep;37(9):2010-2021. doi: 10.1109/TMI.2018.2809641. Epub 2018 Feb 26.
3
Assessing the Robustness of Frequency-Domain Ultrasound Beamforming Using Deep Neural Networks.使用深度神经网络评估频域超声波束形成的稳健性。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2321-2335. doi: 10.1109/TUFFC.2020.3002256. Epub 2020 Jun 15.
4
Deep Learning for Ultrasound Beamforming in Flexible Array Transducer.深度学习在柔性阵列换能器中的超声波束形成。
IEEE Trans Med Imaging. 2021 Nov;40(11):3178-3189. doi: 10.1109/TMI.2021.3087450. Epub 2021 Oct 27.
7
Deep-Learning Based Adaptive Ultrasound Imaging From Sub-Nyquist Channel Data.基于深度学习的亚奈奎斯特通道数据自适应超声成像
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 May;69(5):1638-1648. doi: 10.1109/TUFFC.2022.3160859. Epub 2022 Apr 27.
8

本文引用的文献

1
Deep-Learning Based Adaptive Ultrasound Imaging From Sub-Nyquist Channel Data.基于深度学习的亚奈奎斯特通道数据自适应超声成像
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 May;69(5):1638-1648. doi: 10.1109/TUFFC.2022.3160859. Epub 2022 Apr 27.
2
Assessing the Robustness of Frequency-Domain Ultrasound Beamforming Using Deep Neural Networks.使用深度神经网络评估频域超声波束形成的稳健性。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2321-2335. doi: 10.1109/TUFFC.2020.3002256. Epub 2020 Jun 15.
3
Learning Sub-Sampling and Signal Recovery With Applications in Ultrasound Imaging.学习亚采样和信号恢复及其在超声成像中的应用。
IEEE Trans Med Imaging. 2020 Dec;39(12):3955-3966. doi: 10.1109/TMI.2020.3008501. Epub 2020 Nov 30.
4
Deep learning-based reconstruction of ultrasound images from raw channel data.基于深度学习的原始通道数据超声图像重建。
Int J Comput Assist Radiol Surg. 2020 Sep;15(9):1487-1490. doi: 10.1007/s11548-020-02197-w. Epub 2020 Jun 3.
7
Adaptive and Compressive Beamforming Using Deep Learning for Medical Ultrasound.基于深度学习的医学超声自适应与压缩波束形成
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Aug;67(8):1558-1572. doi: 10.1109/TUFFC.2020.2977202. Epub 2020 Mar 5.
8
The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability.广义对比噪声比:一种用于检测病变的正式定义。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Apr;67(4):745-759. doi: 10.1109/TUFFC.2019.2956855. Epub 2019 Nov 29.
9
Beamforming and Speckle Reduction Using Neural Networks.基于神经网络的波束形成和散斑抑制。
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 May;66(5):898-910. doi: 10.1109/TUFFC.2019.2903795. Epub 2019 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验