Suppr超能文献

评估深度学习网络超声成束的输入域和模型选择。

Evaluating Input Domain and Model Selection for Deep Network Ultrasound Beamforming.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2370-2385. doi: 10.1109/TUFFC.2021.3064303. Epub 2021 Jun 29.

Abstract

Improving ultrasound B-mode image quality remains an important area of research. Recently, there has been increased interest in using deep neural networks (DNNs) to perform beamforming to improve image quality more efficiently. Several approaches have been proposed that use different representations of channel data for network processing, including a frequency-domain approach that we previously developed. We previously assumed that the frequency domain would be more robust to varying pulse shapes. However, frequency- and time-domain implementations have not been directly compared. In addition, because our approach operates on aperture domain data as an intermediate beamforming step, a discrepancy often exists between network performance and image quality on fully reconstructed images, making model selection challenging. Here, we perform a systematic comparison of frequency- and time-domain implementations. In addition, we propose a contrast-to-noise ratio (CNR)-based regularization to address previous challenges with model selection. Training channel data were generated from simulated anechoic cysts. Test channel data were generated from simulated anechoic cysts with and without varied pulse shapes, in addition to physical phantom and in vivo data. We demonstrate that simplified time-domain implementations are more robust than we previously assumed, especially when using phase preserving data representations. Specifically, 0.39- and 0.36-dB median improvements in in vivo CNR compared to DAS were achieved with frequency- and time-domain implementations, respectively. We also demonstrate that CNR regularization improves the correlation between training validation loss and simulated CNR by 0.83 and between simulated and in vivo CNR by 0.35 compared to DNNs trained without CNR regularization.

摘要

提高超声 B 模式图像质量仍然是一个重要的研究领域。最近,人们对使用深度神经网络(DNN)进行波束形成以更有效地提高图像质量越来越感兴趣。已经提出了几种方法,这些方法使用不同的通道数据表示形式进行网络处理,包括我们之前开发的频域方法。我们之前假设频域对变化的脉冲形状更稳健。然而,频域和时域实现并未直接进行比较。此外,由于我们的方法作为中间波束形成步骤在孔径域数据上运行,因此网络性能和完全重建图像上的图像质量之间经常存在差异,这使得模型选择具有挑战性。在这里,我们对频域和时域实现进行了系统比较。此外,我们提出了一种基于对比度噪声比(CNR)的正则化方法来解决以前模型选择的挑战。训练通道数据是从模拟无回声囊肿生成的。测试通道数据是从模拟无回声囊肿(具有和不具有变化的脉冲形状)以及物理体模和体内数据生成的。我们证明简化的时域实现比我们之前假设的更稳健,尤其是在使用相位保持数据表示形式时。具体来说,与 DAS 相比,体内 CNR 的中值分别提高了 0.39 和 0.36 dB。我们还证明,与未进行 CNR 正则化的 DNN 相比,CNR 正则化将训练验证损失与模拟 CNR 之间的相关性提高了 0.83,将模拟 CNR 与体内 CNR 之间的相关性提高了 0.35。

相似文献

1
Evaluating Input Domain and Model Selection for Deep Network Ultrasound Beamforming.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2370-2385. doi: 10.1109/TUFFC.2021.3064303. Epub 2021 Jun 29.
2
Deep Neural Networks for Ultrasound Beamforming.
IEEE Trans Med Imaging. 2018 Sep;37(9):2010-2021. doi: 10.1109/TMI.2018.2809641. Epub 2018 Feb 26.
3
Assessing the Robustness of Frequency-Domain Ultrasound Beamforming Using Deep Neural Networks.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2321-2335. doi: 10.1109/TUFFC.2020.3002256. Epub 2020 Jun 15.
4
Deep Learning for Ultrasound Beamforming in Flexible Array Transducer.
IEEE Trans Med Imaging. 2021 Nov;40(11):3178-3189. doi: 10.1109/TMI.2021.3087450. Epub 2021 Oct 27.
5
Deep Learning to Obtain Simultaneous Image and Segmentation Outputs From a Single Input of Raw Ultrasound Channel Data.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2493-2509. doi: 10.1109/TUFFC.2020.2993779. Epub 2020 Nov 24.
6
Training improvements for ultrasound beamforming with deep neural networks.
Phys Med Biol. 2019 Feb 18;64(4):045018. doi: 10.1088/1361-6560/aafd50.
7
Deep-Learning Based Adaptive Ultrasound Imaging From Sub-Nyquist Channel Data.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 May;69(5):1638-1648. doi: 10.1109/TUFFC.2022.3160859. Epub 2022 Apr 27.
8
Training Deep Network Ultrasound Beamformers With Unlabeled In Vivo Data.
IEEE Trans Med Imaging. 2022 Jan;41(1):158-171. doi: 10.1109/TMI.2021.3107198. Epub 2021 Dec 30.
9
Adaptive beamforming based on minimum variance (ABF-MV) using deep neural network for ultrafast ultrasound imaging.
Ultrasonics. 2022 Dec;126:106823. doi: 10.1016/j.ultras.2022.106823. Epub 2022 Aug 12.
10
Reverberation Noise Suppression in Ultrasound Channel Signals Using a 3D Fully Convolutional Neural Network.
IEEE Trans Med Imaging. 2021 Apr;40(4):1184-1195. doi: 10.1109/TMI.2021.3049307. Epub 2021 Apr 1.

引用本文的文献

2
Deep Learning for Ultrasound Image Formation: CUBDL Evaluation Framework and Open Datasets.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Dec;68(12):3466-3483. doi: 10.1109/TUFFC.2021.3094849. Epub 2021 Nov 23.

本文引用的文献

1
Deep-Learning Based Adaptive Ultrasound Imaging From Sub-Nyquist Channel Data.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 May;69(5):1638-1648. doi: 10.1109/TUFFC.2022.3160859. Epub 2022 Apr 27.
2
Assessing the Robustness of Frequency-Domain Ultrasound Beamforming Using Deep Neural Networks.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2321-2335. doi: 10.1109/TUFFC.2020.3002256. Epub 2020 Jun 15.
3
Learning Sub-Sampling and Signal Recovery With Applications in Ultrasound Imaging.
IEEE Trans Med Imaging. 2020 Dec;39(12):3955-3966. doi: 10.1109/TMI.2020.3008501. Epub 2020 Nov 30.
4
Deep learning-based reconstruction of ultrasound images from raw channel data.
Int J Comput Assist Radiol Surg. 2020 Sep;15(9):1487-1490. doi: 10.1007/s11548-020-02197-w. Epub 2020 Jun 3.
5
Deep Learning to Obtain Simultaneous Image and Segmentation Outputs From a Single Input of Raw Ultrasound Channel Data.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2493-2509. doi: 10.1109/TUFFC.2020.2993779. Epub 2020 Nov 24.
6
CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2574-2583. doi: 10.1109/TUFFC.2020.2982848. Epub 2020 Nov 24.
7
Adaptive and Compressive Beamforming Using Deep Learning for Medical Ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Aug;67(8):1558-1572. doi: 10.1109/TUFFC.2020.2977202. Epub 2020 Mar 5.
8
The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Apr;67(4):745-759. doi: 10.1109/TUFFC.2019.2956855. Epub 2019 Nov 29.
9
Beamforming and Speckle Reduction Using Neural Networks.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 May;66(5):898-910. doi: 10.1109/TUFFC.2019.2903795. Epub 2019 Mar 8.
10
Training improvements for ultrasound beamforming with deep neural networks.
Phys Med Biol. 2019 Feb 18;64(4):045018. doi: 10.1088/1361-6560/aafd50.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验