IEEE Trans Med Imaging. 2018 Sep;37(9):2010-2021. doi: 10.1109/TMI.2018.2809641. Epub 2018 Feb 26.
We investigate the use of deep neural networks (DNNs) for suppressing off-axis scattering in ultrasound channel data. Our implementation operates in the frequency domain via the short-time Fourier transform. The inputs to the DNN consisted of the separated real and imaginary components (i.e. in-phase and quadrature components) observed across the aperture of the array, at a single frequency and for a single depth. Different networks were trained for different frequencies. The output had the same structure as the input and the real and imaginary components were combined as complex data before an inverse short-time Fourier transform was used to reconstruct channel data. Using simulation, physical phantom experiment, and in vivo scans from a human liver, we compared this DNN approach to standard delay-and-sum (DAS) beamforming and an adaptive imaging technique that uses the coherence factor. For a simulated point target, the side lobes when using the DNN approach were about 60 dB below those of standard DAS. For a simulated anechoic cyst, the DNN approach improved contrast ratio (CR) and contrast-to-noise (CNR) ratio by 8.8 dB and 0.3 dB, respectively, compared with DAS. For an anechoic cyst in a physical phantom, the DNN approach improved CR and CNR by 17.1 dB and 0.7 dB, respectively. For two in vivo scans, the DNN approach improved CR and CNR by 13.8 dB and 9.7 dB, respectively. We also explored methods for examining how the networks in this paper function.
我们研究了使用深度神经网络(DNN)来抑制超声通道数据中的离轴散射。我们的实现通过短时傅里叶变换在频域中运行。DNN 的输入包括在阵列孔径处观察到的单个频率和单个深度的分离实部和虚部(即同相和正交分量)。不同的网络针对不同的频率进行了训练。输出具有与输入相同的结构,并且在使用逆短时傅里叶变换重建通道数据之前,将实部和虚部组合为复数据。通过仿真、物理体模实验和人体肝脏的体内扫描,我们将这种 DNN 方法与标准的延迟和求和(DAS)波束形成以及使用相干因子的自适应成像技术进行了比较。对于模拟点目标,使用 DNN 方法时的旁瓣比标准 DAS 低约 60 dB。对于模拟无声囊肿,与 DAS 相比,DNN 方法分别将对比度比(CR)和对比度噪声比(CNR)提高了 8.8 dB 和 0.3 dB。对于物理体模中的无声囊肿,DNN 方法分别将 CR 和 CNR 提高了 17.1 dB 和 0.7 dB。对于两个体内扫描,DNN 方法分别将 CR 和 CNR 提高了 13.8 dB 和 9.7 dB。我们还探讨了检查本文中网络如何工作的方法。