Suppr超能文献

相似文献

1
Deep Neural Networks for Ultrasound Beamforming.
IEEE Trans Med Imaging. 2018 Sep;37(9):2010-2021. doi: 10.1109/TMI.2018.2809641. Epub 2018 Feb 26.
2
Deep Learning for Ultrasound Beamforming in Flexible Array Transducer.
IEEE Trans Med Imaging. 2021 Nov;40(11):3178-3189. doi: 10.1109/TMI.2021.3087450. Epub 2021 Oct 27.
3
Assessing the Robustness of Frequency-Domain Ultrasound Beamforming Using Deep Neural Networks.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2321-2335. doi: 10.1109/TUFFC.2020.3002256. Epub 2020 Jun 15.
4
Training improvements for ultrasound beamforming with deep neural networks.
Phys Med Biol. 2019 Feb 18;64(4):045018. doi: 10.1088/1361-6560/aafd50.
5
Deep Learning to Obtain Simultaneous Image and Segmentation Outputs From a Single Input of Raw Ultrasound Channel Data.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2493-2509. doi: 10.1109/TUFFC.2020.2993779. Epub 2020 Nov 24.
6
Evaluating Input Domain and Model Selection for Deep Network Ultrasound Beamforming.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2370-2385. doi: 10.1109/TUFFC.2021.3064303. Epub 2021 Jun 29.
7
Improvising limitations of DNN based ultrasound image reconstruction.
Phys Eng Sci Med. 2022 Dec;45(4):1139-1151. doi: 10.1007/s13246-022-01181-9. Epub 2022 Sep 29.
8
CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2574-2583. doi: 10.1109/TUFFC.2020.2982848. Epub 2020 Nov 24.
9
An Adaptive Synthetic Aperture Method Applied to Ultrasound Tissue Harmonic Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Apr;65(4):557-569. doi: 10.1109/TUFFC.2018.2799870.
10
Adaptive beamforming based on minimum variance (ABF-MV) using deep neural network for ultrafast ultrasound imaging.
Ultrasonics. 2022 Dec;126:106823. doi: 10.1016/j.ultras.2022.106823. Epub 2022 Aug 12.

引用本文的文献

2
Clinical, Safety, and Engineering Perspectives on Wearable Ultrasound Technology: A Review.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Jul;71(7):730-744. doi: 10.1109/TUFFC.2023.3342150. Epub 2024 Jul 9.
3
FLEX: FLexible Transducer With External Tracking for Ultrasound Imaging With Patient-Specific Geometry Estimation.
IEEE Trans Biomed Eng. 2024 Apr;71(4):1298-1307. doi: 10.1109/TBME.2023.3333216. Epub 2024 Mar 20.
4
Comparing Focused-Tracked and Plane Wave-Tracked ARFI Log(VoA) In Silico and in Application to Human Carotid Atherosclerotic Plaque, Ex Vivo.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Jul;70(7):636-652. doi: 10.1109/TUFFC.2023.3278495. Epub 2023 Jun 29.
5
A Data-Efficient Deep Learning Strategy for Tissue Characterization via Quantitative Ultrasound: Zone Training.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 May;70(5):368-377. doi: 10.1109/TUFFC.2023.3245988. Epub 2023 Apr 26.
7
Gaussian process regression for ultrasound scanline interpolation.
J Med Imaging (Bellingham). 2022 May;9(3):037001. doi: 10.1117/1.JMI.9.3.037001. Epub 2022 May 17.
8
USDL: Inexpensive Medical Imaging Using Deep Learning Techniques and Ultrasound Technology.
Proc Des Med Devices Conf. 2020 Apr;2020. doi: 10.1115/dmd2020-9109. Epub 2020 Jul 27.
9
Deep Learning-Based Microbubble Localization for Ultrasound Localization Microscopy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1312-1325. doi: 10.1109/TUFFC.2022.3152225. Epub 2022 Mar 30.
10
Deep-fUS: A Deep Learning Platform for Functional Ultrasound Imaging of the Brain Using Sparse Data.
IEEE Trans Med Imaging. 2022 Jul;41(7):1813-1825. doi: 10.1109/TMI.2022.3148728. Epub 2022 Jun 30.

本文引用的文献

1
High-Quality Plane Wave Compounding Using Convolutional Neural Networks.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Oct;64(10):1637-1639. doi: 10.1109/TUFFC.2017.2736890. Epub 2017 Aug 7.
2
Spatial Prediction Filtering of Acoustic Clutter and Random Noise in Medical Ultrasound Imaging.
IEEE Trans Med Imaging. 2017 Feb;36(2):396-406. doi: 10.1109/TMI.2016.2610758. Epub 2016 Sep 16.
3
A model and regularization scheme for ultrasonic beamforming clutter reduction.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Nov;62(11):1913-27. doi: 10.1109/TUFFC.2015.007004.
4
Ultrasonic multipath and beamforming clutter reduction: a chirp model approach.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Mar;61(3):428-40. doi: 10.1109/TUFFC.2014.2928.
5
Short-lag spatial coherence of backscattered echoes: imaging characteristics.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jul;58(7):1377-88. doi: 10.1109/TUFFC.2011.1957.
6
Broadband minimum variance beamforming for ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Feb;56(2):314-25. doi: 10.1109/TUFFC.2009.1040.
7
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7. doi: 10.1109/58.139123.
8
Adaptive imaging using the generalized coherence factor.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Feb;50(2):128-41. doi: 10.1109/tuffc.2003.1182117.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验