Suppr超能文献

深度学习在超声束形成中的应用。

Deep Neural Networks for Ultrasound Beamforming.

出版信息

IEEE Trans Med Imaging. 2018 Sep;37(9):2010-2021. doi: 10.1109/TMI.2018.2809641. Epub 2018 Feb 26.

Abstract

We investigate the use of deep neural networks (DNNs) for suppressing off-axis scattering in ultrasound channel data. Our implementation operates in the frequency domain via the short-time Fourier transform. The inputs to the DNN consisted of the separated real and imaginary components (i.e. in-phase and quadrature components) observed across the aperture of the array, at a single frequency and for a single depth. Different networks were trained for different frequencies. The output had the same structure as the input and the real and imaginary components were combined as complex data before an inverse short-time Fourier transform was used to reconstruct channel data. Using simulation, physical phantom experiment, and in vivo scans from a human liver, we compared this DNN approach to standard delay-and-sum (DAS) beamforming and an adaptive imaging technique that uses the coherence factor. For a simulated point target, the side lobes when using the DNN approach were about 60 dB below those of standard DAS. For a simulated anechoic cyst, the DNN approach improved contrast ratio (CR) and contrast-to-noise (CNR) ratio by 8.8 dB and 0.3 dB, respectively, compared with DAS. For an anechoic cyst in a physical phantom, the DNN approach improved CR and CNR by 17.1 dB and 0.7 dB, respectively. For two in vivo scans, the DNN approach improved CR and CNR by 13.8 dB and 9.7 dB, respectively. We also explored methods for examining how the networks in this paper function.

摘要

我们研究了使用深度神经网络(DNN)来抑制超声通道数据中的离轴散射。我们的实现通过短时傅里叶变换在频域中运行。DNN 的输入包括在阵列孔径处观察到的单个频率和单个深度的分离实部和虚部(即同相和正交分量)。不同的网络针对不同的频率进行了训练。输出具有与输入相同的结构,并且在使用逆短时傅里叶变换重建通道数据之前,将实部和虚部组合为复数据。通过仿真、物理体模实验和人体肝脏的体内扫描,我们将这种 DNN 方法与标准的延迟和求和(DAS)波束形成以及使用相干因子的自适应成像技术进行了比较。对于模拟点目标,使用 DNN 方法时的旁瓣比标准 DAS 低约 60 dB。对于模拟无声囊肿,与 DAS 相比,DNN 方法分别将对比度比(CR)和对比度噪声比(CNR)提高了 8.8 dB 和 0.3 dB。对于物理体模中的无声囊肿,DNN 方法分别将 CR 和 CNR 提高了 17.1 dB 和 0.7 dB。对于两个体内扫描,DNN 方法分别将 CR 和 CNR 提高了 13.8 dB 和 9.7 dB。我们还探讨了检查本文中网络如何工作的方法。

相似文献

1
Deep Neural Networks for Ultrasound Beamforming.深度学习在超声束形成中的应用。
IEEE Trans Med Imaging. 2018 Sep;37(9):2010-2021. doi: 10.1109/TMI.2018.2809641. Epub 2018 Feb 26.
2
Deep Learning for Ultrasound Beamforming in Flexible Array Transducer.深度学习在柔性阵列换能器中的超声波束形成。
IEEE Trans Med Imaging. 2021 Nov;40(11):3178-3189. doi: 10.1109/TMI.2021.3087450. Epub 2021 Oct 27.
3
Assessing the Robustness of Frequency-Domain Ultrasound Beamforming Using Deep Neural Networks.使用深度神经网络评估频域超声波束形成的稳健性。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2321-2335. doi: 10.1109/TUFFC.2020.3002256. Epub 2020 Jun 15.
6
Evaluating Input Domain and Model Selection for Deep Network Ultrasound Beamforming.评估深度学习网络超声成束的输入域和模型选择。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2370-2385. doi: 10.1109/TUFFC.2021.3064303. Epub 2021 Jun 29.
7
Improvising limitations of DNN based ultrasound image reconstruction.基于深度神经网络的超声图像重建的临时限制
Phys Eng Sci Med. 2022 Dec;45(4):1139-1151. doi: 10.1007/s13246-022-01181-9. Epub 2022 Sep 29.
9
An Adaptive Synthetic Aperture Method Applied to Ultrasound Tissue Harmonic Imaging.自适应合成孔径方法在超声组织谐波成像中的应用。
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Apr;65(4):557-569. doi: 10.1109/TUFFC.2018.2799870.

引用本文的文献

2
Clinical, Safety, and Engineering Perspectives on Wearable Ultrasound Technology: A Review.可穿戴式超声技术的临床、安全和工程视角:综述。
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Jul;71(7):730-744. doi: 10.1109/TUFFC.2023.3342150. Epub 2024 Jul 9.
7
Gaussian process regression for ultrasound scanline interpolation.用于超声扫描线插值的高斯过程回归
J Med Imaging (Bellingham). 2022 May;9(3):037001. doi: 10.1117/1.JMI.9.3.037001. Epub 2022 May 17.
9
Deep Learning-Based Microbubble Localization for Ultrasound Localization Microscopy.基于深度学习的超声定位显微镜微泡定位。
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1312-1325. doi: 10.1109/TUFFC.2022.3152225. Epub 2022 Mar 30.

本文引用的文献

1
High-Quality Plane Wave Compounding Using Convolutional Neural Networks.基于卷积神经网络的高质量平面波复合。
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Oct;64(10):1637-1639. doi: 10.1109/TUFFC.2017.2736890. Epub 2017 Aug 7.
3
A model and regularization scheme for ultrasonic beamforming clutter reduction.一种用于超声波束形成杂波抑制的模型与正则化方案。
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Nov;62(11):1913-27. doi: 10.1109/TUFFC.2015.007004.
4
5
Short-lag spatial coherence of backscattered echoes: imaging characteristics.背散射回波的短时滞空间相干性:成像特征。
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jul;58(7):1377-88. doi: 10.1109/TUFFC.2011.1957.
6
Broadband minimum variance beamforming for ultrasound imaging.用于超声成像的宽带最小方差波束形成
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Feb;56(2):314-25. doi: 10.1109/TUFFC.2009.1040.
8
Adaptive imaging using the generalized coherence factor.使用广义相干因子的自适应成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Feb;50(2):128-41. doi: 10.1109/tuffc.2003.1182117.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验