Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
Sci Total Environ. 2021 Jul 10;777:145988. doi: 10.1016/j.scitotenv.2021.145988. Epub 2021 Feb 20.
Lignin modifying enzymes from fungi and bacteria are potential biocatalysts for sustainable mitigation of different potentially toxic pollutants in wastewater. Notably, the paper and pulp industry generates enormous amounts of wastewater containing high amounts of complex lignin-derived chlorinated phenolics and sulfonated pollutants. The presence of these compounds in wastewater is a critical issue from environmental and toxicological perspectives. Some chloro-phenols are harmful to the environment and human health, as they exert carcinogenic, mutagenic, cytotoxic, and endocrine-disrupting effects. In order to address these most urgent concerns, the use of oxidative lignin modifying enzymes for bioremediation has come into focus. These enzymes catalyze modification of phenolic and non-phenolic lignin-derived substances, and include laccase and a range of peroxidases, specifically lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). In this review, we explore the key pollutant-generating steps in paper and pulp processing, summarize the most recently reported toxicological effects of industrial lignin-derived phenolic compounds, especially chlorinated phenolic pollutants, and outline bioremediation approaches for pollutant mitigation in wastewater from this industry, emphasizing the oxidative catalytic potential of oxidative lignin modifying enzymes in this regard. We highlight other emerging biotechnical approaches, including phytobioremediation, bioaugmentation, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based technology, protein engineering, and degradation pathways prediction, that are currently gathering momentum for the mitigation of wastewater pollutants. Finally, we address current research needs and options for maximizing sustainable biobased and biocatalytic degradation of toxic industrial wastewater pollutants.
真菌和细菌来源的木质素修饰酶是可持续减轻不同潜在有毒废水中污染物的潜在生物催化剂。值得注意的是,造纸和纸浆工业产生了大量含有高浓度复杂木质素衍生氯化酚和磺化污染物的废水。这些化合物在废水中的存在是一个从环境和毒理学角度来看都是至关重要的问题。一些氯酚类化合物对环境和人类健康有害,因为它们具有致癌、致突变、细胞毒性和内分泌干扰作用。为了解决这些最紧迫的问题,人们开始关注利用氧化木质素修饰酶进行生物修复。这些酶可以催化酚类和非酚类木质素衍生物质的修饰,包括漆酶和一系列过氧化物酶,特别是木质素过氧化物酶(LiP)、锰过氧化物酶(MnP)、多功能过氧化物酶(VP)和染料脱色过氧化物酶(DyP)。在这篇综述中,我们探讨了造纸和纸浆加工过程中产生关键污染物的步骤,总结了工业木质素衍生酚类化合物(特别是氯化酚类污染物)的最新报道的毒理学效应,并概述了该工业废水中污染物减轻的生物修复方法,强调了氧化木质素修饰酶在这方面的氧化催化潜力。我们还强调了其他新兴的生物技术方法,包括植物修复、生物增强、基于 Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)的技术、蛋白质工程和降解途径预测,这些方法目前正在为减轻废水污染物而发展。最后,我们讨论了当前的研究需求和选择,以最大限度地实现可持续的基于生物的和生物催化的有毒工业废水污染物的降解。