文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于芳香族枢纽代谢物的自调节系统将木质素增值为生物塑料。

Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system.

机构信息

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.

出版信息

Nat Commun. 2024 Oct 28;15(1):9288. doi: 10.1038/s41467-024-53609-3.


DOI:10.1038/s41467-024-53609-3
PMID:39468081
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11519575/
Abstract

Exploring microorganisms with downstream synthetic advantages in lignin valorization is an effective strategy to increase target product diversity and yield. This study ingeniously engineers the non-lignin-degrading bacterium Ralstonia eutropha H16 (also known as Cupriavidus necator H16) to convert lignin, a typically underutilized by-product of biorefinery, into valuable bioplastic polyhydroxybutyrate (PHB). The aromatic metabolism capacities of R. eutropha H16 for different lignin-derived aromatics (LDAs) are systematically characterized and complemented by integrating robust functional modules including O-demethylation, aromatic aldehyde metabolism and the mitigation of by-product inhibition. A pivotal discovery is the regulatory element PcaQ, which is highly responsive to the aromatic hub metabolite protocatechuic acid during lignin degradation. Based on the computer-aided design of PcaQ, we develop a hub metabolite-based autoregulation (HMA) system. This system can control the functional genes expression in response to heterologous LDAs and enhance metabolism efficiency. Multi-module genome integration and directed evolution further fortify the strain's stability and lignin conversion capacities, leading to PHB production titer of 2.38 g/L using heterologous LDAs as sole carbon source. This work not only marks a leap in bioplastic production from lignin components but also provides a strategy to redesign the non-LDAs-degrading microbes for efficient lignin valorization.

摘要

利用在木质素增值方面具有下游合成优势的微生物来增加目标产物的多样性和产量是一种有效的策略。本研究巧妙地对非木质素降解细菌罗尔斯通氏菌 H16(也称为贪铜菌 H16)进行了工程改造,使其能够将木质素这种生物炼制过程中通常未得到充分利用的副产物转化为有价值的生物塑料聚羟基丁酸酯(PHB)。本研究系统地描述了 R. eutropha H16 对不同木质素衍生芳烃(LDA)的芳香族代谢能力,并通过整合包括 O-去甲基化、芳香醛代谢和减轻副产物抑制在内的强大功能模块进行了补充。一个关键的发现是调节元件 PcaQ,它对木质素降解过程中的芳香族枢纽代谢物原儿茶酸高度响应。基于 PcaQ 的计算机辅助设计,我们开发了一种基于枢纽代谢物的自动调节(HMA)系统。该系统可以根据异源 LDA 控制功能基因的表达,从而提高代谢效率。多模块基因组整合和定向进化进一步增强了菌株的稳定性和木质素转化能力,使得该菌株能够以异源 LDA 作为唯一碳源生产 PHB,产量达到 2.38 g/L。这项工作不仅标志着生物塑料生产从木质素成分上的飞跃,还为重新设计非 LDA 降解微生物以实现高效木质素增值提供了一种策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/d505baa2d40a/41467_2024_53609_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/5f483b022ad1/41467_2024_53609_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/393c15f602b2/41467_2024_53609_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/6c2fbffbec99/41467_2024_53609_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/20401525adc3/41467_2024_53609_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/1cf1f467c582/41467_2024_53609_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/3d15b54f2354/41467_2024_53609_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/9b4a7dddd7a1/41467_2024_53609_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/d505baa2d40a/41467_2024_53609_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/5f483b022ad1/41467_2024_53609_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/393c15f602b2/41467_2024_53609_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/6c2fbffbec99/41467_2024_53609_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/20401525adc3/41467_2024_53609_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/1cf1f467c582/41467_2024_53609_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/3d15b54f2354/41467_2024_53609_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/9b4a7dddd7a1/41467_2024_53609_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/11519575/d505baa2d40a/41467_2024_53609_Fig8_HTML.jpg

相似文献

[1]
Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system.

Nat Commun. 2024-10-28

[2]
The Carbon Source Effect on the Production of Ralstonia eutropha H16 and Proteomic Response Underlying Targeting the Bioconversion with Solar Fuels.

Appl Biochem Biotechnol. 2022-7

[3]
Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16.

Nat Biotechnol. 2006-10

[4]
Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production.

Microb Cell Fact. 2020-12-11

[5]
Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16.

Appl Environ Microbiol. 2017-6-16

[6]
The Discovery of Membrane Vesicle Biogenesis in the Polyhydroxybutyrate-non-producing Mutant Strain of Cupriavidus necator H16.

Microbes Environ. 2024

[7]
Increased Tolerance to Furfural by Introduction of Polyhydroxybutyrate Synthetic Genes to .

J Microbiol Biotechnol. 2019-5-28

[8]
Reprint of "versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16".

J Biotechnol. 2014-12-20

[9]
Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones.

Appl Environ Microbiol. 2013-5-17

[10]
Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16.

J Bacteriol. 2010-8-20

引用本文的文献

[1]
Advancing lignocellulosic conversion though biosensor-enabled metabolic engineering.

Green Chem. 2025-7-30

[2]
Engineered grows well on methoxylated aromatics due to its formaldehyde metabolism and stress response.

mSphere. 2025-8-26

[3]
Data-driven synthetic microbes for sustainable future.

NPJ Syst Biol Appl. 2025-7-7

本文引用的文献

[1]
Evolution and engineering of pathways for aromatic O-demethylation in Pseudomonas putida KT2440.

Metab Eng. 2024-7

[2]
Identification of transporters involved in aromatic compounds tolerance through screening of transporter deletion libraries.

Microb Biotechnol. 2024-4

[3]
Transporter Engineering in Microbial Cell Factory Boosts Biomanufacturing Capacity.

Biodes Res. 2022-6-15

[4]
A key -demethylase in the degradation of guaiacol by PD630.

Appl Environ Microbiol. 2023-10-31

[5]
Lignin conversion to β-ketoadipic acid by via metabolic engineering and bioprocess development.

Sci Adv. 2023-9-8

[6]
Multiplexed fitness profiling by RB-TnSeq elucidates pathways for lignin-related aromatic catabolism in Sphingobium sp. SYK-6.

Cell Rep. 2023-8-29

[7]
Stabilization strategies in biomass depolymerization using chemical functionalization.

Nat Rev Chem. 2020-6

[8]
A single-cell massively parallel reporter assay detects cell-type-specific gene regulation.

Nat Genet. 2023-2

[9]
Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering.

Metab Eng. 2023-1

[10]
Microbial lignin valorization through depolymerization to aromatics conversion.

Trends Biotechnol. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索