Jani Aîcha, Busch Mark, Mietner J Benedikt, Ollivier Jacques, Appel Markus, Frick Bernhard, Zanotti Jean-Marc, Ghoufi Aziz, Huber Patrick, Fröba Michael, Morineau Denis
Institute of Physics of Rennes, CNRS-University of Rennes 1, UMR 6251, F-35042 Rennes, France.
Center for Integrated Multiscale Materials Systems (CIMMS), Hamburg University of Technology, 21073 Hamburg, Germany.
J Chem Phys. 2021 Mar 7;154(9):094505. doi: 10.1063/5.0040705.
We have investigated the dynamics of liquid water confined in mesostructured porous silica (MCM-41) and periodic mesoporous organosilicas (PMOs) by incoherent quasielastic neutron scattering experiments. The effect of tuning the water/surface interaction from hydrophilic to more hydrophobic on the water mobility, while keeping the pore size in the range 3.5 nm-4.1 nm, was assessed from the comparative study of three PMOs comprising different organic bridging units and the purely siliceous MCM-41 case. An extended dynamical range was achieved by combining time-of-flight (IN5B) and backscattering (IN16B) quasielastic neutron spectrometers providing complementary energy resolutions. Liquid water was studied at regularly spaced temperatures ranging from 300 K to 243 K. In all systems, the molecular dynamics could be described consistently by the combination of two independent motions resulting from fast local motion around the average molecule position and the confined translational jump diffusion of its center of mass. All the molecules performed local relaxations, whereas the translational motion of a fraction of molecules was frozen on the experimental timescale. This study provides a comprehensive microscopic view on the dynamics of liquid water confined in mesopores, with distinct surface chemistries, in terms of non-mobile/mobile fraction, self-diffusion coefficient, residence time, confining radius, local relaxation time, and their temperature dependence. Importantly, it demonstrates that the strength of the water/surface interaction determines the long-time tail of the dynamics, which we attributed to the translational diffusion of interfacial molecules, while the water dynamics in the pore center is barely affected by the interface hydrophilicity.
我们通过非相干准弹性中子散射实验研究了限制在介孔结构多孔二氧化硅(MCM - 41)和周期性介孔有机硅(PMO)中的液态水的动力学。通过对三种包含不同有机桥连单元的PMO和纯硅质MCM - 41的对比研究,评估了在保持孔径在3.5纳米至4.1纳米范围内时,将水与表面的相互作用从亲水性调整为更疏水性对水迁移率的影响。通过结合飞行时间(IN5B)和背散射(IN16B)准弹性中子光谱仪实现了扩展的动力学范围,这两种光谱仪提供互补的能量分辨率。在300 K至243 K的规则间隔温度下研究了液态水。在所有系统中,分子动力学可以通过两种独立运动的组合来一致地描述,这两种运动分别是围绕平均分子位置的快速局部运动以及其质心的受限平移跳跃扩散。所有分子都进行局部弛豫,而一部分分子的平移运动在实验时间尺度上被冻结。这项研究从非移动/移动部分、自扩散系数、停留时间、限制半径、局部弛豫时间及其温度依赖性等方面,对限制在具有不同表面化学性质的介孔中的液态水的动力学提供了全面的微观视角。重要的是,它表明水与表面相互作用的强度决定了动力学的长时间尾部,我们将其归因于界面分子的平移扩散,而孔中心的水动力学几乎不受界面亲水性的影响。