Suppr超能文献

肾衰竭预测模型:晚期慢性肾脏病患者的综合外部验证研究。

Kidney Failure Prediction Models: A Comprehensive External Validation Study in Patients with Advanced CKD.

机构信息

Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.

Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.

出版信息

J Am Soc Nephrol. 2021 May 3;32(5):1174-1186. doi: 10.1681/ASN.2020071077. Epub 2021 Mar 8.

Abstract

BACKGROUND

Various prediction models have been developed to predict the risk of kidney failure in patients with CKD. However, guideline-recommended models have yet to be compared head to head, their validation in patients with advanced CKD is lacking, and most do not account for competing risks.

METHODS

To externally validate 11 existing models of kidney failure, taking the competing risk of death into account, we included patients with advanced CKD from two large cohorts: the European Quality Study (EQUAL), an ongoing European prospective, multicenter cohort study of older patients with advanced CKD, and the Swedish Renal Registry (SRR), an ongoing registry of nephrology-referred patients with CKD in Sweden. The outcome of the models was kidney failure (defined as RRT-treated ESKD). We assessed model performance with discrimination and calibration.

RESULTS

The study included 1580 patients from EQUAL and 13,489 patients from SRR. The average statistic over the 11 validated models was 0.74 in EQUAL and 0.80 in SRR, compared with 0.89 in previous validations. Most models with longer prediction horizons overestimated the risk of kidney failure considerably. The 5-year Kidney Failure Risk Equation (KFRE) overpredicted risk by 10%-18%. The four- and eight-variable 2-year KFRE and the 4-year Grams model showed excellent calibration and good discrimination in both cohorts.

CONCLUSIONS

Some existing models can accurately predict kidney failure in patients with advanced CKD. KFRE performed well for a shorter time frame (2 years), despite not accounting for competing events. Models predicting over a longer time frame (5 years) overestimated risk because of the competing risk of death. The Grams model, which accounts for the latter, is suitable for longer-term predictions (4 years).

摘要

背景

已经开发出各种预测模型来预测 CKD 患者发生肾衰竭的风险。然而,尚未对头对头比较指南推荐的模型,它们在晚期 CKD 患者中的验证不足,并且大多数模型都不考虑竞争风险。

方法

为了考虑到死亡的竞争风险,我们对外验证了 11 个现有的肾衰竭预测模型,纳入了来自两个大型队列的晚期 CKD 患者:欧洲质量研究(EQUAL),这是一项正在进行的欧洲前瞻性、多中心老年晚期 CKD 患者队列研究,以及瑞典肾脏登记处(SRR),这是一项正在进行的瑞典 CKD 转归的肾脏科患者登记处。模型的结局为肾衰竭(定义为接受 RRT 治疗的终末期肾病)。我们通过区分度和校准度评估了模型的性能。

结果

本研究纳入了 EQUAL 队列中的 1580 名患者和 SRR 队列中的 13489 名患者。在 11 个经过验证的模型中,平均统计量在 EQUAL 中为 0.74,在 SRR 中为 0.80,而之前验证中的为 0.89。大多数预测时间跨度较长的模型大大高估了肾衰竭的风险。5 年肾衰竭风险方程(KFRE)高估了 10%至 18%的风险。4 年和 8 变量 2 年 KFRE 和 4 年 Grams 模型在两个队列中都表现出良好的校准度和区分度。

结论

一些现有的模型可以准确预测晚期 CKD 患者的肾衰竭。KFRE 在较短的时间框架(2 年)内表现良好,尽管没有考虑竞争事件。预测时间跨度较长(5 年)的模型由于死亡的竞争风险而高估了风险。Grams 模型考虑到了后者,适用于长期预测(4 年)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbb/8259669/fa7b309fd4e8/ASN.2020071077absf1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验